Fabrication of Mullite Coating and its Oxidation Protection for Carbon Fiber Reinforced SiC Composites

2016 ◽  
Vol 697 ◽  
pp. 476-480 ◽  
Author(s):  
Kuan Hong Zeng ◽  
Qing Song Ma ◽  
Li Hui Cai

To protect carbon fiber-reinforced SiC (C/SiC) composites against oxidation,mullite coating was prepared on C/SiC composites by dip-coating method with high solid content Al2O3-SiO2 sol as raw materials. X-ray diffraction and scanning electron microscopy were employed to analyze the phase and microstructure of the coating. The results show that the as-prepared coating is SiO2-rich, monolithic and well bonded with substrate without penetrating crack, giving rise to good oxidation-resistance. After soaked at 1400°C for 30min under static air, the coated C/SiC composites possess 87% of original flexural strength. As a result of sealing and filling of cracks and pores by viscous SiO2 in coating, the coated C/SiC composites exhibit improved oxidation resistance at 1500°C and 1600°C. There is no change in flexural strength after oxidized at 1500°C and 1600°C for 30min, respectively. Nevertheless, the carbothermal reduction between viscous SiO2 and free carbon in C/SiC substrate would occur obviously when oxidation temperature was elevated or oxidation time was prolonged, leading to local foaming in coating and decreasing in oxidation resistance.

2017 ◽  
Vol 726 ◽  
pp. 137-142 ◽  
Author(s):  
Zhi Hua Chen ◽  
Si'an Chen ◽  
Jin Tai Wu ◽  
Hai Feng Hu ◽  
Yu Di Zhang

The reainforcement of T700 carbon fiber was oxidized at 400°C, as-received and treated carbon fiber reinforced mini Cf/SiC matrix composites were fabricated by precursor infiltration and pyrolysis (PIP) method. The mechanical properties of the composites were determined and compared. The results showed that with the time of oxidation increased, the flexural strength of composites decreased. The flexural modulus and tensile modulus were increased by the 87.8 GPa to 92.9 GPa and 131 GPa to 150 GPa. Without oxidation pretreatment, the composites represented maximum flexural strength of 649 MPa. For 1h oxidation, the composites reached the maximum tensile strength of 821 MPa. However, carbon fiber pre-oxidation for 2h, C/SiC composites mechanical properties appeared to reduce seriously.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


Vacuum ◽  
2018 ◽  
Vol 156 ◽  
pp. 334-344 ◽  
Author(s):  
Xiao-Hui Yang ◽  
Ke-Zhi Li ◽  
Long-teng Bai ◽  
Zhi-gang Zhao ◽  
Yi Wang

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4592
Author(s):  
Chen Xiong ◽  
Tianhao Lan ◽  
Qiangsheng Li ◽  
Haodao Li ◽  
Wujian Long

This study investigates the feasibility of collaborative use of recycled carbon fiber reinforced polymer (RCFRP) fibers and recycled aggregate (RA) in concrete, which is called RCFRP fiber reinforced RA concrete (RFRAC). The mechanical properties of the composite were studied through experimental investigation, considering different RCFRP fiber contents (0%, 0.5%, 1.0%, and 1.5% by volume) and different RA replacement rates (0%, 10%, 20%, and 30% by volume). Specifically, ten different mixes were designed to explore the flowability and compressive and flexural strengths of the proposed composite. Experimental results indicated that the addition of RCFRP fibers and RA had a relatively small influence on the compressive strength of concrete (less than 5%). Moreover, the addition of RA slightly decreased the flexural strength of concrete, while the addition of RCFRP fibers could significantly improve the flexural performance. For example, the flexural strength of RA concrete with 1.5% RCFRP fiber addition increased by 32.7%. Considering the good flexural properties of the composite and its potential in reducing waste CFRP and construction solid waste, the proposed RFRAC is promising for use in civil concrete structures with high flexural performance requirements.


2010 ◽  
Vol 152-153 ◽  
pp. 829-833 ◽  
Author(s):  
Xin Ying Lv ◽  
Rong Guo Wang ◽  
Wen Bo Liu ◽  
Long Jiang

Bis-maleimide (BMI) resins are widely applied in carbon fiber reinforced polymer composites in aerospace fields, for their excellent thermal and mechanical properties. The effects of thermo-oxidative aging on mechanical properties of carbon fiber reinforced BMI composites were investigated by SEM with the combination of flexural strength test and inter-laminar shear strength (ILSS) test. The results indicated that the thermal-oxidative aging had some effects on mechanical properties of carbon fiber/BMI composites; however the testing temperature or service temperature had much more effects than aging time. With aging time increased, the flexural strength at 150 oC and the ILSS at 25 oC slightly increased, while the ILSS at 150 oC decreased gradually. Both test results of mechanical properties and fracture models of damaged flexural specimens by SEM indicated that the matrix resin in the composites showed some viscoelastic behaviors that resulted in the remarkable dependence of mechanical properties of the composites on temperature. Therefore, the carbon fiber reinforced BMI composites had lower flexural strength and ILSS at 150 oC than that at 25 oC.


Sign in / Sign up

Export Citation Format

Share Document