Extension of the Freiberger Model of Spread for the Calculation of Material Flow during Rolling of Long Products to a New Material Group of Mg Alloys AZ31, AZ81, WE43

2016 ◽  
Vol 716 ◽  
pp. 677-684 ◽  
Author(s):  
Pavel Adamyanets ◽  
Matthias Schmidtchen ◽  
Rudolf Kawalla

This article shows the extension of an empirical model for the numeric calculation of the spread during rolling Freiberg in calibres developed at TU Bergakademie to Mg alloys AZ31, AZ81 und WE43.The material independent foundations were developed at the Institute of Metal Forming at TU Bergakademie Freiberg.The Freiberger spread model has, through numerous rolling trials and examinations of the material flow, been broadened. Furthermore, the results of the calculations were compared with these trials.The Freiberger model for spread takes the geometrical input and output parameters into consideration, as well as the material flow, the deformation rate v, the deformation temperature θ, the chemical composition of the material Cw, longitudinal tension CL, and friction Cμ between the rolling stock and rolls. And it further considers the diagonal ratio CA∗aKNn of the box pass and the filling ratio of the box pass m.

Author(s):  
I. I. Lube ◽  
N. V. Trutnev ◽  
S. V. Tumashev ◽  
A. V. Krasikov ◽  
A. G. Ul’yanov ◽  
...  

At production of pipes of type 13Cr grade steel used at development of oil and gas deposits in areas with aggressive environment, intensive wear of instrument takes place, first of all, piercing mill mandrels. Factors, influencing the resistivity of the piercing mandrels considered, including chemical composition of the material, the mandrel is made of and its design. Based on industrial experience it was shown, that chrome content in the mandrel material practically does not affect on the increase of its resistivity, since the formed thin protective oxides having high melting temperature, are quickly failed and practically are not restored in the process of piercing. To increase the resistivity of piercing mandrels at production of casing tubes of type 13Cr grade steel, a work was accomplished to select a new material for their manufacturing. The chemical composition of steel presented, which was traditionally used for piercing mandrels manufacturing, as well as a steel grade proposed to increase their resistivity. First, molybdenum content was increased, which increases the characteristics of steel strength and ductility at high temperatures and results in grain refining. Second, tungsten content was also increased, which forms carbides in the steel resulting in an increase of its hardness and “red resistivity”, as well as in preventing grains growth during heating. Third, cobalt content was also increased, which increases heat resistivity and shock loads resistivity. The three elements increase enabled to increase the mandrels resistivity by two times. Results of mandrel test of steel 20ХН2МВ3КБ presented, the mandrel having corrugation on the working cone surface, which enabled to reach the resistivity growth to 12 passes without significant change of instrument cost. Microstructure of mandrels made of steels 20Х2Н4МФА and 20ХН2МВ3КБ shown. Application of the centering pin of special design was tested, which provided forming of a rounding edge on the front billet ends, eliminated undercut of mandrel external surface in the process of secondary billet grip and increase the service life of the piercing mill mandrels. At production of seamless pipes of martensite class type 13Cr stainless steels having L80 group of strength, an increase of piercing mandrel resistivity was reached by more than four times, which together with other technical solutions enabled to increase the hourly productivity of the hot rolling section of Volzhsky pipe plant ТПА 159-426 line by more than two times.


CIRP Annals ◽  
2011 ◽  
Vol 60 (1) ◽  
pp. 283-286 ◽  
Author(s):  
M. Merklein ◽  
J. Koch ◽  
S. Opel ◽  
T. Schneider

Author(s):  
K. S. Al-Athel ◽  
M. S. Gadala

The adaptation of the volume of fluid method (VOF) to solid mechanics (VOS) is presented in this work with the focus on metal forming applications. The method is discussed for a general non-uniform mesh with Eulerian finite element formulation. The implementation of the VOS method in metal forming applications is presented by focusing on topics such as the contact between the tool and the workpiece, tracking of the free surface of the material flow and the connectivity of the free surface during the whole process. Improvement on the connectivity of the free surface and the representation of curves is achieved by considering the mechanics of different metal forming processes. Different applications are simulated and discussed to highlight the capability of the VOS method.


2016 ◽  
Vol 61 (1) ◽  
pp. 353-360 ◽  
Author(s):  
B. Dybowski ◽  
J. Szymszal ◽  
Ł. Poloczek ◽  
A. Kiełbus

Due to low density and good mechanical properties, aluminium alloys are widely applied in transportation industry. Moreover, they are characterized by the specific physical properties, such as high electrical conductivity. This led to application of the hypoeutectic Al-Si-Mg alloys in the power generation industry. Proper selection of the alloys chemical composition is an important stage in achievement of the demanded properties. The following paper presents results of the research on the influence of alloys chemical composition on their properties. It has been revealed that Si and Ti addition decreases electrical conductivity of the Al-Si-Mg alloys, while Na addition increases it. The mechanical properties of the investigated alloys are decreased by both silicon and iron presence. Sodium addition increases ductility of the Al-Si-Mg alloys.


2018 ◽  
Vol 190 ◽  
pp. 13003 ◽  
Author(s):  
Marion Merklein ◽  
Maria Löffler ◽  
Daniel Gröbel ◽  
Johannes Henneberg

Highly-integrated and closely-tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metals. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions such as stress and strain states which reduce the geometrical accuracy of the functional elements. Thus, one main challenge within sheet-bulk metal forming is the identification of methods to control the material flow and thus to improve the product quality. One suitable approach is to control the material flow by local modifications of the tribological conditions. Within this study requirements regarding the needed adaption of the tribological conditions for a specific sheet-bulk metal forming process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved die filling of the functional elements. Based on these results abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. The correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.


2013 ◽  
Vol 690-693 ◽  
pp. 74-77
Author(s):  
Zuzana Turnova ◽  
Tomas Chrebet ◽  
Ivana Turekova ◽  
Karol Balog

Today, magnesium (Mg) alloys are recognized alternatives to iron and aluminum to reduce the weight of structural materials. This contribution was performed to provide information on the flammability of magnesium alloys through investigation of the ignition temperature of selected Mg alloys. The test was performed in a muffle furnace with dynamic heating program. Also were performed tests of chemical composition of studied specimens.


2019 ◽  
Vol 6 ◽  
pp. 10 ◽  
Author(s):  
Marion Merklein ◽  
Maria Löffler ◽  
Daniel Gröbel ◽  
Johannes Henneberg

Highly integrated and closely tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metal. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions which reduce the geometrical accuracy of the parts. One challenge within sheet-bulk metal forming is the identification of methods to control the material flow to improve the product quality. A suitable approach is the local modification of the tribological conditions. Within this study, requirements regarding the needed adaption of the tribological system for a specific process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved geometrical accuracy. Based on these results, abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. Additionally, the functional stability of a modification was investigated. Finally, the correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.


2020 ◽  
Vol 50 ◽  
pp. 257-264
Author(s):  
Sebastian Wernicke ◽  
Ulrich Thier ◽  
Marlon Hahn ◽  
Erman Tekkaya

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Łukasz Wójcik ◽  
Konrad Lis ◽  
Zbigniew Pater

Abstract This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s−1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.


2011 ◽  
Vol 486 ◽  
pp. 139-142
Author(s):  
Chao Cheng Chang ◽  
Dinh Hiep Nguyen ◽  
Hsin Sheng Hsiao

A metal forming system comprising an electrical heater, capable of conducting processes at elevated temperatures, was developed to perform micro backward extrusion processes of SUS 304 stainless steel. Two punches with diameters of 1.6 mm and 1.8 mm were used to extrude the billets inside the die with an inner diameter of 2 mm. All processes were lubricated with water-based graphite and conducted under isothermal conditions at 400 °C. The results show that the developed extrusion system can be used to produce the stainless steel components with a micro cup-shaped profile. Moreover, the variation in the rim height of the cups produced by the 1.8 mm diameter punch is greater than the one by the 1.6 mm diameter punch. The results show that a decrease in the clearance between the punch and die could lead to an increase in the inhomogeneity of material flow in the micro backward extrusion processes.


Sign in / Sign up

Export Citation Format

Share Document