The Use of FBC Fly Ash in the Preparation of Portland Cement Clinker

2016 ◽  
Vol 722 ◽  
pp. 168-172
Author(s):  
Karel Kulísek ◽  
Dominik Gazdič ◽  
Karel Dvořák ◽  
Marcela Fridrichová

The present work focuses on the use of fluid fly ash for Portland clinker burning. Fluid ashes are carriers of all basic oxides represented in the cement raw meal. However, while the share of hydraulic oxides is in ashes sufficient, there is a significant deficiency in calcium oxide content. Preliminary studies have shown that the combination thereof with calcite as the second essential component of the fluid fly-ashes for the raw material based on Portland clinker burning application, it is necessary to solve a problematic issues. The first one concerns the potential leakage SOx resulting from decomposition of CaSO4 ash into the atmosphere. The second circumstance is the correction tracks raw meal in order to redistribute in the samples prepared under the initial studies, the obtained clinker minerals content in favor of calcium silicate, of them further in favor of alite. The last issue is the evaluation of the impact of fluid utilization of fly ash as a partial raw material bases for reducing CO2 emissions in the Portland clinker burning.

2006 ◽  
Vol 60 (9-10) ◽  
pp. 245-252 ◽  
Author(s):  
Zvezdana Bascarevic ◽  
Miroslav Komljenovic ◽  
Ljiljana Petrasinovic-Stojkanovic ◽  
Natasa Jovanovic ◽  
Aleksandra Rosic ◽  
...  

In this paper the results of the investigated properties of fly ash from four thermal power plants in Serbia are presented. The physical, chemical, mineralogical and thermal characterization of fly ash was carried out, in order to determine the possibility to utilize this material in the building materials industry, foremost in the cement industry. It was determined that, although there are differences concerning the physical, chemical, and mineralogical characteristics of the investigated samples, they are very similar concerning their thermal characteristics. It was concluded that using fly ash as one of the raw components in the mixture for Portland cement clinker synthesis, not only enables the substitution of natural resources, but it might have a positive effect on the lowering of the sintering temperature.


2015 ◽  
Vol 1124 ◽  
pp. 170-176
Author(s):  
Vit Cerný

In a world is of ever-increasing pressure on the use of fly ash in building materials. Despite these efforts the majority of produced energy by-products end up as reclamation material and only small part as high-quality materials. Technology of sintered artificial aggregate is fully based on the fly ashes and allows processing a high percentage of this raw material. The work is devoted to assessing the impact of fly ash character on the quality artificial aggregate. There were selected three fly ashes from high-temperature combustion technology and two from the FBC combustion. The results clearly show that the FBC ashes are not too useful for sintered aggregate technology. For fly ashes is determined primarily by their fineness and the amount of amorphous silica phase.


1986 ◽  
Vol 86 ◽  
Author(s):  
Micheline Regourd

ABSTRACTThe hydration of a blended cement through hydraulic or pozzolanic reactions results in heterogeneous polyphase materials. Because portland cement clinker is the major component in most cement blends, the microstructural development of portland cement hydrates, including C-S-H and pore structures, is first discussed. Slag, fly ash, silica fume and limestone filler cements are then compared to portland cement with regards to C-S-H morphology and composition, aluminate crystallization, cement paste interfaces and pore size distribution.


2015 ◽  
Vol 244 ◽  
pp. 140-145 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Fly ash is a well utilizable secondary raw material for the production of alkali activated construction materials. It is a significant alumina-silicates source suitable for the chemical reaction resulting in hardened composites. Physical and chemical properties of fly ashes as a co-product of coal burning mainly depend on characteristics of coal, burning temperature and combustion conditions. High variability of the properties of fly ash causes an uncertainty in the properties of alkali activated mortars. Time behaviour of the composition of the fly ash produced in a heating plant located in Košice, Slovakia as well as leaching behaviour of both alumina and silica from particular batches during one-year period was documented. Leaching tests were carried out using the distilled water and alkali solutions with three different concentrations. Both compressive and tensile strengths of alkali activated mortars were measured, and the correlation between the mechanical properties of hardened mortars and the chemical composition of fly ashes as well as their leaching characteristics was investigated.


2020 ◽  
Vol 989 ◽  
pp. 221-227 ◽  
Author(s):  
O.Yu. Sheshukov ◽  
I.V. Nekrasov ◽  
Denis K. Egiazaryan

Synthesis of the portland cement clinker in the presence of a significant amount of SO3 is difficult, due to the tri-calcium silicate formation suppression. Since some technogenic formations contain a significant amount of SO3, it is hard to obtain the portland cement clinker from it. The analysis of the SO3 influence on the clinker-formation thermodynamic process allowed to reveal a number of regularities of their occurrence and to propose a method for the raw mix composition calculating and its preparation, to ensure a stable portland cement clinker synthesis.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Li Luo ◽  
Yimin Zhang ◽  
Shenxu Bao ◽  
Tiejun Chen

The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT) to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical composition and physical properties of clinker, and hydration characteristic of cement were studied by burnability analysis, differential thermal analysis, X-ray diffraction, and hydration analysis. The results showed that the raw meal containing IOT had higher reactivity and burnability than the raw meal containing clay, and the use of IOT did not affect the formation of characteristic mineralogical phases of Portland cement clinker. Furthermore, the physical and mechanical performance of two cement clinkers were similar. In addition, the use of IOT was found to improve the grindability of clinker and lower the hydration heat of Portland cement. These findings suggest that IOT can replace the clay as alumina-silicate raw material for the preparation of Portland cement clinker.


2010 ◽  
Vol 10 (15) ◽  
pp. 1525-1535 ◽  
Author(s):  
T. Punmathari ◽  
M. Rachakornk ◽  
A. Imyim ◽  
M. Wecharatan

Sign in / Sign up

Export Citation Format

Share Document