Double-Channel Filter Based on the Structure of Two Symmetric Layers with Defects in One-Dimensional Photonic Crystals

2017 ◽  
Vol 737 ◽  
pp. 220-224
Author(s):  
Bi Yuan Jian ◽  
Guang Bin Wu ◽  
Hong Wang

Using 2×2 transfer matrix method, we numerically investigate a kind of structure in which two symmetric layers with defects are sandwiched in one-dimensional photonic crystals (PCs). The PCs are made of ordinary dielectrics and placed in the air. When a light beam is incident into PCs, the two resonant peaks can be achieved which constitute a couple of photonic channels. The transmittance of the resonant peaks can nearly reach up to 1. Furthermore, the tunability of the resonant peaks is discussed in detail, the results shows that the position of the resonant peak depending on the value of the incident angle. These properties can provide a theoretical basis for design of a new type of tunable double-channel photonic crystal filter.

2018 ◽  
Vol 96 (11) ◽  
pp. 1224-1229
Author(s):  
Y. Sharma ◽  
S. Shukla ◽  
A. Aman ◽  
S. Prasad ◽  
V. Singh

The electromagnetic density of modes (DOM) in a finite one-dimensional photonic crystal containing dispersive metamaterials is computed using Wigner’s time approach. The expression of DOM is derived using the transfer matrix method. Different structural parameters, such as relative thickness, incident angle, and total number of unit cells are varied and their effects are investigated. It is observed that relative thickness, angle of incidence, and total number of unit cells all play an important role in determining the properties of DOM depending on the frequency regime under consideration.


2009 ◽  
Vol 23 (05) ◽  
pp. 715-722
Author(s):  
LIMEI QI ◽  
ZIQIANG YANG ◽  
XI GAO

The reflected properties of one-dimensional frequency-dependent metallic-dielectric photonic crystals are investigated when disorders are introduced for the first time. It is demonstrated that disordered metallic-dielectric photonic crystal provides remarkably high reflection range compared with the corresponding period metallic-dielectric one when the degree of disorder is moderately chosen, and a wider stop band will be obtained with the increasing of periods. At last, the reflected properties influenced by incident angle for different polarizations are also calculated and discussed.


2012 ◽  
Vol 614-615 ◽  
pp. 1629-1632
Author(s):  
Gang Xu ◽  
Yun Sun

Applying transfer matrix method, we get reflection and transmission coefficient of finite one dimensional photonic crystals. At the same time, we consider the position influence of single defect. We find the frequency of defect mode is same, but the height of transmission peak is not same when single defect is in different position of crystal. The transmission peak is maximum when the defect is in center of finite one dimensional photonic crystals.


Author(s):  
Azka Umar ◽  
Chun Jiang

This paper focuses on manipulating thermal emission and radiation loss of heat energy in a heat waveguide. A One-Dimensional Photonic Crystal is used as a waveguide clad to prohibit the thermal emission from escaping. The model may reduce the radiation loss of heat energy in the waveguide core, and heat energy can be confined to propagate along the waveguide’s longitude axis. The waveguide clad comprises alternative layers of high and low refractive index materials containing sufficient electromagnetic stop bands to trap the thermal emission from escaping out of the waveguide. The numerical simulation of the model shows that the forbidden bandgap of photonic crystal structures with alternative layers of silica and silicon has width enough to make heat energy be confined within the waveguide core so that efficient heat energy transmission can be achieved along the longitude axis of the waveguide.


2008 ◽  
Vol 17 (03) ◽  
pp. 255-264 ◽  
Author(s):  
ARAFA H. ALY ◽  
SANG-WAN RYU ◽  
CHIEN-JANG WU

We theoretically studied electromagnetic wave propagation in a one-dimensional metal/dielectric photonic crystal (1D MDPC) consisting of alternating metallic and dielectric materials by using the transfer matrix method. We performed numerical analyses to investigate the propagation characteristics of a 1D MDPC. We discuss the details of the calculated results in terms of the electron density, the thickness of the metallic layer, different kinds of metals, and the plasma frequency.


2014 ◽  
Vol 576 ◽  
pp. 27-31
Author(s):  
Gai Mei Zhang ◽  
Can Wang ◽  
Yan Jun Guo ◽  
Wang Wei ◽  
Xiao Xiang Song

The photonic crystal has the property that electromagnetic waves with interval of frequency in photonic band gap (PBG) can not be propagated, so it has important applying and researching value. The traditional one-dimensional photonic crystal is with narrow band gap width, and the reflection within the band is small, especially the band gap is sensitive to the incident angle and the polarization of light. A new photonic band gap (PBG) structure, metallodielectric photonic crystal by inserting metal film in the medium can overcomes the shortcomings mentioned above. The one-dimensional Ag/SiOx photonic crystal was prepared, and theoretical and experimental researches were developed. The results show that photonic band gap appears gradually and the band gap width increase with increasing of period of repeating thickness. With the thickness of Ag film increasing, the band gap width increases, but the starting wavelength of the photonic band gap keeps unchanged. With thickness of SiOx film increasing, the band gap width of photonic band gap also increases, but it is not obvious and starting wavelength increases.


2008 ◽  
Vol 8 (12) ◽  
pp. 6584-6588 ◽  
Author(s):  
R. Márquez-Islas ◽  
B. Flores-Desirena ◽  
F. Pérez-Rodríguez

We investigate theoretically the coupling of exciton with light in a one-dimensional photonic crystal. The unit cell of the crystal consists of two alternating layers, namely a metallic layer and a semiconductor one. The frequency-dependent dielectric function of the metal is described by the Drude model, whereas for the semiconductor we use a nonlocal excitonic dielectric function. The polariton dispersion for s-polarized modes in the metal-semiconductor photonic crystal is compared with that for a dielectric-semiconductor photonic crystal. Because of the metal layers, a low-frequency gap appears in the photonic band structure. The presence of the semiconductor gives rise to photonic bands associated with the coupling of light with size-quantized excitón states. At frequencies above the longitudinal exciton frequency, the photonic band structure exhibits anticrossing phenomena produced by the upper exciton–polariton mode and size-quantized excitons. It is found that the anticrossing phenomena in the metal-semiconductor photonic crystal occur at higher frequencies in comparison with the dielectric-semiconductor case.


Sign in / Sign up

Export Citation Format

Share Document