Experimental Study on the Effectiveness of Masonry-Basalt TRM Reinforced Systems Characterized by Different Fiber Grid Densities

2017 ◽  
Vol 747 ◽  
pp. 266-273 ◽  
Author(s):  
Carmelo Caggegi ◽  
Giuseppe Ferrara ◽  
Emma Lanoye ◽  
Đức Bình Nguyễn ◽  
Aron Gabor ◽  
...  

The use of Textile Reinforced Mortar (TRM) systems is emerging as a suitable solution for strengthening historical masonry buildings, as they are made of compatible materials often resulting in limited and reversible interventions. Moreover, TRM systems reinforced by basalt textile are a very promising solution. This study presents the results of single shear-lap tests intended at defining and comparing the effectiveness of three reinforced basalt TRM-masonry systems characterized by different strengthening ratios. These systems have been obtained by inserting one, two or three basalt grids in the TRM composite. The experimental results show that a slippage of the fiber roving within the mortar matrix frequently occurs in the reinforced system characterized by a low strengthening ratio; the increase in fiber grid density often results in a brittle debonding between the lower and the upper layer of mortar matrix. The results show that a high strengthening ratio may result in decreasing the strengthening performances.

2011 ◽  
Vol 255-260 ◽  
pp. 2622-2626 ◽  
Author(s):  
Azmat Ullah ◽  
Khan Shahzada ◽  
Akhtar Naeem Khan ◽  
Amjad Naseer ◽  
Mohammad Ashraf ◽  
...  

This paper presents a study on seismic resistance of typical single and double storey masonry buildings constructed in the southern districts of Pakhthunkhwa, Pakistan. Two types of bricks; wooden and rice husk burnt bricks, have been investigated in combination with mud and cement-sand mortar. Plane and reinforced specimens have been tested in axial compression and diagonal compression. Analysis of the experimental results show that both single and double storey buildings constructed in the study area with mud mortar and mud plaster are seismically vulnerable. However application of the wire mesh on wall surface subsequently plastered increases the strength significantly and make the structure resistant to the earthquake forces.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7021
Author(s):  
Dragoș Ungureanu ◽  
Nicolae Țăranu ◽  
Dan Alexandru Ghiga ◽  
Dorina Nicolina Isopescu ◽  
Petru Mihai ◽  
...  

This study presents the results of an experimental and numerical program carried out on unreinforced masonry panels strengthened by textile-reinforced mortar (TRM) plastering. For this purpose, five panels were constructed, instrumented and tested in diagonal shear mode. Two panels were tested as reference. The first reference panel was left unstrengthened, while the second one was strengthened by a traditional self-supporting cement mortar matrix reinforced with steel meshes. The remaining three panels were strengthened by TRM plastering applied on one or both faces and connected with transversal composite anchors. The numerical and the experimental results evidenced a good effectiveness of the TRM systems, especially when applied on both panel facings.


2011 ◽  
Vol 255-260 ◽  
pp. 2627-2631
Author(s):  
Muhammad Shoaib ◽  
Amjad Naseer ◽  
Khan Shahzada ◽  
Akhtar Naeem Khan ◽  
M. Ashraf

This paper presents an experimental study on the improvement of unreinforced block masonry buildings against earthquake disasters. Unreinforced concrete block masonry piers have been tested for lateral strength before and after retrofitting. Welded mesh and injection of cement grout techniques have been used for piers retrofitting. The analysis of experimental results demonstrates that proper retrofitting can decrease the risk to concrete block masonry buildings in future scenario earthquakes. Retrofitting increases not only the overall strength of unreinforced masonry piers but also the ductility.


2019 ◽  
Vol 55 (11) ◽  
Author(s):  
C. S. Akondi ◽  
K. Bantawa ◽  
D. M. Manley ◽  
S. Abt ◽  
P. Achenbach ◽  
...  

Abstract.This work measured $ \mathrm{d}\sigma/\mathrm{d}\Omega$dσ/dΩ for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $ \gamma p\rightarrow K^0\Sigma^+$γp→K0Σ+, $ \gamma n\rightarrow K^0\Lambda$γn→K0Λ, and $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 reactions. Our results for $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $ N^{\ast}$N* resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $ \pi N$πN channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.


2020 ◽  
Vol 29 (1) ◽  
pp. 195-202
Author(s):  
Tran Anh Dung ◽  
Mai Van Tham ◽  
Do Xuan Quy ◽  
Tran The Truyen ◽  
Pham Van Ky ◽  
...  

AbstractThis paper presents simulation calculations and experimental measurements to determine the dynamic load factor (DLF) of train on the urban railway in Vietnam. Simulation calculations are performed by SIMPACK software. Dynamic measurement experiments were conducted on Cat Linh – Ha Dong line. The simulation and experimental results provide the DLF values with the largest difference of 2.46% when the train speed varies from 0 km/h to 80 km/h


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2011 ◽  
Vol 415-417 ◽  
pp. 1703-1707
Author(s):  
Jun Min Chen ◽  
Xiao Lin Yao

Abstract. In order to investigate the optimal thickness of infiltration media in the Constructed Rapid Infiltration System, the artificial soil column is used to simulate the Constructed Rapid Infiltration System, and the CODCr, NH3-N and TN concentrations of the effluent from all the sampling sites are monitored. The experimental results and analysis show that the thickness of infiltration media exerts a significant influence on the CODCr, NH3-N and TN concentration and removal efficiency of the effluent; the CODCr, NH3-N and TN are mainly removed in the 0-1800mm zone of the artificial soil column; the total CODCr removal efficiency increases, as the thickness of infiltration media increases, but the CODCr removal efficiency in the 1800-2200mm zone is very low; the NH3-N and TN removal efficiency reaches the maximum where the thickness of infiltration media is 1800mm; the NH3-N and TN concentration of the effluent from 1800-2200mm zone dose not decrease, but increase 5-8%, due to the assimilation denitrification and amemoniation reaction on the end of the anaerobic zone; in consideration of the effluent quality, efficient biodegradation zone, construction investment, etc. the optimal thickness of infiltration media in CRI system should be 1800mm.


Author(s):  
Fabricio S. Silva ◽  
Ricardo A. Medronho ◽  
Luiz Fernando Barca

Oil production facilities have choke/control valves to control production and protect downstream equipment against over pressurization. This process is responsible for droplets break up and the formation of emulsions which are difficult to treat. An experimental study of water in oil dispersion droplets break up in localized pressure drop is presented. To accomplish that, an apparatus simulating a gate valve was constructed. Droplet Size Distribution (DSD) was measured by laser light scattering. Oil physical properties were controlled and three different break up models were compared with the experimental results. All experimental maximum diameters (dmax) were above Kolmogorov length scale. The results show that dmax decreases with increase of energy dissipation rate (ε) according to the relation dmax ∝ ε−0.42. The Hinze (1955, AIChE J.1, 3, 289–295) model failed to predict the experimental results, although, it was able to adjust reasonably well those points when the original proportional constant was changed. It was observed that increasing the dispersed phase concentration increases dmax due to turbulence suppression and/or coalescence phenomenon. Turbulent viscous break up model gave fairly good prediction.


1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Sign in / Sign up

Export Citation Format

Share Document