scholarly journals Diagonal Tensile Test on Masonry Panels Strengthened with Textile-Reinforced Mortar

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7021
Author(s):  
Dragoș Ungureanu ◽  
Nicolae Țăranu ◽  
Dan Alexandru Ghiga ◽  
Dorina Nicolina Isopescu ◽  
Petru Mihai ◽  
...  

This study presents the results of an experimental and numerical program carried out on unreinforced masonry panels strengthened by textile-reinforced mortar (TRM) plastering. For this purpose, five panels were constructed, instrumented and tested in diagonal shear mode. Two panels were tested as reference. The first reference panel was left unstrengthened, while the second one was strengthened by a traditional self-supporting cement mortar matrix reinforced with steel meshes. The remaining three panels were strengthened by TRM plastering applied on one or both faces and connected with transversal composite anchors. The numerical and the experimental results evidenced a good effectiveness of the TRM systems, especially when applied on both panel facings.

2017 ◽  
Vol 747 ◽  
pp. 266-273 ◽  
Author(s):  
Carmelo Caggegi ◽  
Giuseppe Ferrara ◽  
Emma Lanoye ◽  
Đức Bình Nguyễn ◽  
Aron Gabor ◽  
...  

The use of Textile Reinforced Mortar (TRM) systems is emerging as a suitable solution for strengthening historical masonry buildings, as they are made of compatible materials often resulting in limited and reversible interventions. Moreover, TRM systems reinforced by basalt textile are a very promising solution. This study presents the results of single shear-lap tests intended at defining and comparing the effectiveness of three reinforced basalt TRM-masonry systems characterized by different strengthening ratios. These systems have been obtained by inserting one, two or three basalt grids in the TRM composite. The experimental results show that a slippage of the fiber roving within the mortar matrix frequently occurs in the reinforced system characterized by a low strengthening ratio; the increase in fiber grid density often results in a brittle debonding between the lower and the upper layer of mortar matrix. The results show that a high strengthening ratio may result in decreasing the strengthening performances.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 792 ◽  
Author(s):  
Yaogang Tian ◽  
Dong Lu ◽  
Jianwei Zhou ◽  
Yuxuan Yang ◽  
Zhenjun Wang

This study proposes a new cement mortar incorporating damping aggregate (DA) and investigates the mechanical properties and damping property of the cement mortar. Four types of DA were prepared, lightweight aggregate presaturated water and three types of polymer emulsion. Further, the effects of polypropylene fiber and rubber powder on the performance of the cement mortar were studied. The experimental results showed that the damping ratio of specimens containing 70% DA was approximately three times higher than that of the reference mortar, with a slight decrease in the mechanical properties. Adding fiber was more effective than rubber powder in improving the damping ratio of the cement mortar, and the optimal dosage of fiber was 0.5%.


2013 ◽  
Vol 838-841 ◽  
pp. 142-147 ◽  
Author(s):  
Jamilu Usman ◽  
Abdul Rahman Mohd Sam ◽  
Salihuddin Radin Sumadi

An experimental investigation was carried out to assess the effect of metakaolin (MK) on the compressive strength, flexural strength and porosity of cement mortar. The cement was partially substituted with MK at 0-30% replacement levels. The results show that the strengths and porosity of mortar containing up to 20% were superior to that of control (0% MK). The Balshin equation fits the experimental results of compressive strength and porosity of the specimens containing MK and there is a strong quantitative relationship between compressive strength and porosity of the specimens.


Author(s):  
Liling Tang ◽  
Yuxi Ding ◽  
Lei Liu ◽  
Junshi Zhang

Abstract In this article, we propose a method to realize the pure shear deformation mode of dielectric elastomer (DE) membranes by tuning two in-plane prestresses. With utilization of carbon grease electrodes, VHB 4905 membranes are prestretched and attached into a retractable device, forming a pure-shear deformation controller. Experimental results demonstrate that, accurate pure shear deformation mode of DEs can be realized by tuning the mechanical loads in the two directions of the deformation controller. Furthermore, large deformation in the direction of free state can be achieved without electromechanical instabilities. The designed deformation controller accurately realizes the specific pure shear deformation mode of DEs and can be utilized to help design the practical soft actuators.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Won-Chang Choi ◽  
Bae-Soo Khil ◽  
Young-Seok Chae ◽  
Qi-Bo Liang ◽  
Hyun-Do Yun

This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.


2012 ◽  
Vol 482-484 ◽  
pp. 2381-2384
Author(s):  
Yan Li Zhao ◽  
Zi Jun Song ◽  
Yan Li ◽  
Hai Sheng San ◽  
Yu Xi Yu

In this paper, the low-temperature (less than or equal to 400 °C) silicon wafer direct bonding technology using wet chemical surface treatment is proposed. For bonded pairs of silicon-oxide-covered wafers, the optimum process condition is established with respect to the experimental results of two different wet chemical processing methods. The bonding quality is evaluated through infrared transmission test and tensile test. Experimental results indicate that the bonding strength of the additional 29% NH3•H2O treated samples is about 7.2 MPa, while it is no more than 3.1 MPa for the only piranha (H2SO4/H2O2) solution and RCA1 (NH3•H2O/H2O2/H2O) solution cleaned samples. Effect of the pulling speed on tensile test is also investigated. The results show that the pulling speed effect should be considered during the tensile test.


2012 ◽  
Vol 594-597 ◽  
pp. 816-819
Author(s):  
Zhi Hao Liu ◽  
Chuan Xiao Liu ◽  
Dong Chen Huang ◽  
Long Wang

Through the uniaxial compression test, the mechanical properties of different placements of iron wire cement mortar, e.g. compressive strength and elastic modulus, were studied, and the mass ratios of cement, sands and water influencing the mechanical properties were put forward, which provided the experimental results for reference for the wide use of the iron wire cement mortar material. From the study it is gained that: (1) The best placement of the iron wires in cement mortar is horizontal. (2) The best mass ratio of the cement, sands and water is 1:4.70:0.81.


2021 ◽  
Vol 13 (7) ◽  
pp. 3697
Author(s):  
Hui Chen ◽  
Xin Huang ◽  
Rui He ◽  
Zhenheng Zhou ◽  
Chuanqing Fu ◽  
...  

In this work, the relationships between the mechanical properties (i.e., compressive strength and flexural strength) and loading speed of polypropylene fiber (PPF)-incorporated cement mortar at different ages (before 28 days) were studied. A total of 162 cubic samples for compressive strength tests and 162 cuboid samples for flexural strength tests were casted and tested. Analytical relationships between the sample properties (i.e., sample age, PPF content, and loading speed) and compressive and flexural strength were proposed based on the experimental data, respectively. Of the predicted compressive and flexural strength results, 70.4% and 75.9% showed less than 15% relative error compared with the experimental results, respectively.


Author(s):  
Robabeh Jazaei ◽  
Moses Karakouzian ◽  
Brendan O’Toole ◽  
Jaeyun Moon ◽  
Samad Gharehdaghi

Sudden concrete failure is due to inelastic deformations of concrete subjected to tension. However, synthesizing nanomaterials reinforcements has significant impact on cement-based composites failure mechanism. Nanomaterials morphology bridges cement crystals as homogeneous and ductile matrix. In this experiment, cement matrix with water to cement ratio of 0.5 reinforced by 0.2–0.6 wt% of functionalized (COOH group) multi-walled and single-walled carbon nanotubes were used. After sonication of carbon nanotubes in water solution for an hour, the cementitious nanocomposites were casted in cylindrical molds (25 mm diameter and 50 mm height). Failure mechanism of cementitious nanocomposite showed considerable ductility throughout splitting tensile test compared to cement mortar. Additionally, the failure pattern after developing the initial crack provided additional time before ultimate failure occurred in cement-based nanocomposites. The evolution of crack propagation was assessed until ultimate specimen failure during splitting-tensile test on cementitious nanocomposite surface. The deformation of cross section from circle to oval shape augmented tensile strength by 50% in cementitious nanocomposite compared to conventional cement mortar.


Sign in / Sign up

Export Citation Format

Share Document