Oxygen Atmosphere Annealing Effect on the Thermal Stability of TiO2-x Based Films for Shutter-Less Infrared Image Sensors

2018 ◽  
Vol 775 ◽  
pp. 272-277
Author(s):  
Y. Ashok Kumar Reddy ◽  
In Ku Kang ◽  
Young Bong Shin ◽  
Hee Chul Lee

In the present study, we examine the thermal stability of TiO2-x (TiO) and Nb:TiO2-x (TNO) films at different exposing temperatures for the as-deposited and oxygen-atmosphere annealed samples. In order to attain the good thermal stability characteristics, lower resistance of the TiO and TNO samples were annealed in oxygen gas atmosphere at a high flow rate (5 lit/min) of oxygen gas and annealing time (25 min). From the structural studies, it can be confirmed that the annealing process gives the incorporation of oxygen atoms to its vacant sites and the phase transition improvement from the amorphous to rutile structure. The annealed samples reveal the high resistivity and temperature coefficient of resistance (TCR) values than as-deposited samples. Furthermore, it was confirmed that the annealed samples exhibits a significant improvement of thermal stability compared to the as-deposited samples. As a result, the annealed TNO sample exhibits outstanding thermal stability as well as better bolometric performance. Consequently, this study reveals that the annealed TNO sample is appropriate for shutter-less infrared image sensor devices.

1993 ◽  
Vol 300 ◽  
Author(s):  
Marcio Favoretio ◽  
Jacobus W. Swart

ABSTRACTThis paper presents an experimental study of the physical and electrical characteristics of tungsten (W) thin films versus the deposition parameters of sputtering. A correlation between the W film characteristics and thermal stability of the W/GaAs Schottky diodes is also presented. Good thermal stability was obtained for W gates with low resistivity and α-W phase, deposited at low pressure and low RF power. W films deposited at high pressure presented high resistivity, β-W phase and weak thermal stability. Diodes annealed under As over-pressure ambient presented an enhanced thermal stability of about 100°C.


Author(s):  
Ni Luo ◽  
Jing Xu ◽  
Xiyue Cheng ◽  
ZhenHua Li ◽  
Yidong Huang ◽  
...  

The good thermal stability of a phosphor is crucial for its practical applications. Unfortunately, in the past decades, only Gurney-Mott equation was available to describe the relation between the luminescence...


2012 ◽  
Vol 512-515 ◽  
pp. 1018-1021
Author(s):  
Xu Fei Zhu ◽  
Long Fei Jiang ◽  
Wei Xing Qi ◽  
Chao Lu ◽  
Ye Song

To overcome the risk of electrolyte leakage and the shortcoming of higher impedance at high frequencies for the conventional aluminum electrolytic capacitor impregnated with electrolyte solutions, solid aluminum electrolytic capacitor employing conducting polyaniline (PANI) as a counter electrode was developed. The as-fabricated solid capacitors have very low impedances at high frequencies and excellent thermal stability. The superior performances can be ascribed to high conductivity and good thermal stability of the camphorsulfonic acid (CSA)-dodecylbenzenesulfonic acid (DBSA) co-doped PANI.


2014 ◽  
Vol 1033-1034 ◽  
pp. 931-936
Author(s):  
Cong Yan Chen ◽  
Rui Lan Fan ◽  
Guan Qun Yun

A novel intumescent flame retardant (IFR) containing ferrocene and caged bicyclic phosphate groups, 1-oxo-4-[4'-(ferrocene carboxylic acid phenyl ester)] amide-2, 6, 7-trioxa-1-phosphabicyclo- [2.2.2] octane (PFAM), was successfully synthesized. The synthesized PFAM were added to flammable polyurethane (PU) as flame retardants and smoke suppressants. The structure of PFAM was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and elemental analysis. Thermal stability of PFAM was tested by themogravimetric analysis (TGA). The results revealed that PFAM had good thermal stability and high char weight, the char weight up to 54% at 600 °C. Flammability properties of PU/PFAM composites were investigated by limiting oxygen index (LOI) test and UL-94 test, respectively. The results of LOI tests showed that the addition of PFAM enhanced flame retardancy of PU. When the content of PFAM reaches to 3%, the LOI value is 22.2. The morphologies of the char for PU and PU/3% PFAM composite can be obtained after LOI testing were examined by SEM. The results demonstrated that PFAM could promote to form the compact and dense intumescent char layer. Experiments showed that, the PFAM application of polyurethane showed positive effect.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1093
Author(s):  
Ye Xue ◽  
Xiao Hu

In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.


2013 ◽  
Vol 579 ◽  
pp. 90-93
Author(s):  
Xin Cai ◽  
Hongwei Liang ◽  
Yuanda Liu ◽  
Rensheng Shen ◽  
Xiaochuan Xia ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 3497-3502 ◽  
Author(s):  
J.P. Chu ◽  
C.H. Lin

Sputtered Cu films containing various insoluble substances, such as Cu(W2.3), Cu(Mo2.0), Cu(Nb0.4), Cu(C2.1) and Cu(W0.4C0.7), are examined in this study. These films are prepared by magnetron sputtering, followed by thermal annealing. The crystal structure, microstructure, SIMS depth-profiles, leakage current, and resistivity of the films are investigated. Good thermal stability of these Cu films is confirmed with focused ion beam, X-ray diffractometry, SIMS, and electrical property measurements. After annealing at 400°C, obvious drops in resistivity, to ~3.8 μ-cm, are seen for Cu(W) film, which is lower than the other films. An evaluation of the leakage current characteristic from the SiO2/Si metal-oxide-semiconductor (MOS) structure also demonstrates that Cu with dilute tungsten is more stable than the other films studied. These results further indicate that the Cu(W) film has more thermal stability than the Cu(Mo), Cu(Nb), Cu(C), Cu(WC) and pure Cu films. Therefore, the film is suitable for the future barrierless metallization.


Sign in / Sign up

Export Citation Format

Share Document