Morphology and Crystallization Behavior of PTT Blends with PTW

2018 ◽  
Vol 777 ◽  
pp. 90-94
Author(s):  
Kun Yan Wang

Poly (trimethylene terephthalate) (PTT)/Poly (ethylene-butylacrylate-glyciyl methacrylate) (PTW) blends have been prepared in composition by weight 95/5, 90/10, 80/20 and 70/30 using the twin screw extruder approach. Their morphologies, crystallization behavior and mechanical properties were investigated. Scanning electron microscopy observation shows the uniform dispersion of PTW in PTT matrix with weight-average particle size from 0.98 to 3.64μm when the PTW content increases from 5wt% to 30wt% in the blends. The presence of the PTW increased the crystallinity of PTT matrix in PTT/PTW blends. A nucleation activity of the PTW appears in PTT/PTW blends.

2013 ◽  
Vol 791-793 ◽  
pp. 240-243
Author(s):  
Kun Yan Wang

Poly (trimethylene terephthalate) (PTT)/acrylonitrile-butadiene-styrene (ABS) blends have been prepared in composition with various ratios using the twin screw extruder approach. Their morphologies and crystallization behavior were investigated. Typical sea-island morphologies were observed by scanning electron microscopy. The partical size of ABS increased as the content of ABS increasing. Differential scanning colorimetry (DSC) experiments showed that the melting point of pure PTT and their blends was almost constant. The presence of the ABS increased the crystallinity of the matrix in PTT/ABS blends with ABS content less than 30wt%.


2013 ◽  
Vol 66 (5) ◽  
pp. 564 ◽  
Author(s):  
Mingmei Zhang ◽  
Qian Sun ◽  
Zaoxue Yan ◽  
Junjie Jing ◽  
Wei Wei ◽  
...  

Well dispersed Pd@Ni bimetallic nanoparticles on multi-walled carbon nanotubes (Pd@Ni/MWCNT) are prepared and used as catalysts for the oxidation of benzyl alcohol. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction were performed to characterise the synthesised catalyst. The results show a uniform dispersion of Pd@Ni nanoparticles on MWCNT with an average particle size of 4.0 nm. The as synthesised catalyst was applied to the oxidation of benzyl alcohol. A 99 % conversion of benzyl alcohol and a 98 % selectivity of benzaldehyde were achieved by using the Pd@Ni/MWCNT (Pd: 0.2 mmol) catalyst with water as a solvent and H2O2 as oxidant at 80°C. The catalytic activity of Pd@Ni/MWCNT towards benzyl alcohol is higher than that of a Pd/MWCNT catalyst at the same Pd loadings. The catalyst can be easily separated due to its magnetic properties.


2017 ◽  
Vol 31 (4) ◽  
pp. 535-552 ◽  
Author(s):  
Washington Mhike ◽  
Walter W Focke ◽  
Joseph KO Asante

Graphite nanoplatelets with an average particle size of 13 μm and an estimated flake thickness of about 76 nm were prepared by microwave exfoliation, followed by ultrasonication-assisted liquid-phase delamination, of an expandable graphite. This nanoadditive was used to fabricate linear low-density polyethylene (LLDPE) and poly(ethylene-co-vinyl acetate) (EVA)-based nanocomposite sheets using rotational molding. The dry blending approach yielded surface resistivities within the static dissipation range at filler loadings as low as 0.25 wt.% (0.1 vol.%). However, even at this low graphite content, impact properties were significantly reduced compared to the neat polymers. Bilayer moldings via the double dumping method proved to be a feasible approach to achieve both acceptable mechanical properties and antistatic properties. This was achieved by rotomolding nanocomposite sheets with a 1-mm outer layer containing the filler and a 2-mm inner layer of neat LLDPE. Excellent fire resistance, in terms of cone calorimeter testing, was achieved when the outer layer also contained 10 wt.% expandable graphite.


2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


2012 ◽  
Vol 576 ◽  
pp. 224-227
Author(s):  
M.R. Kaiser ◽  
Hazleen Anuar ◽  
Shamsul Bhari A. Razak

Polylacticacid (PLA), produced from annually renewable, natural resources is a potential candidate for the partial replacement of petroleum based polymers and also for its biodegradability. PLA is well known for its better mechanical, thermal property but unfortunately the brittleness and rigidity limit its applicability. For a great number of applications such as packaging, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties. In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using plasticizers. For this, PLA was melt-mixed with poly ethylene glycol (PEG) of 600 molecular weights by twin screw extruder. The thermal properties of plasticized PLA were characterized by utilization of dynamic mechanical analysis. The result shows that with addition of plasticizer glass transition temperature (Tg) is decreased sharply and the storage modulus was also decreased.


2012 ◽  
Vol 554-556 ◽  
pp. 18-22
Author(s):  
Supakorn Silakate ◽  
Anucha Wannagon ◽  
Apinon Nuntiya

The objectives of this study were to prepare leadless crystalline glazes from iron oxide by using low temperature firing (1,100°C) and to study the effect of concentration of iron oxide on the phase composition of the glaze raw materials on phase transformation in leadless iron oxide crystalline glaze. The crystalline phases were investigated by using the DTA, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The composition of the glaze raw materials compose of nepheline syenite, colemanite, pottery stone, bentonite, ZnO, Li2CO3, SiOSubscript text2 and 10, 15 and 20%(w/w) iron oxide (Fe2O3). The glaze raw materials were ground for homogeneous mixtures by ball milling for 24h. The average particle size of the mixture was 3.86 µm. The glaze bodies were carried to firing at 1,100°C at the heating rate of 2°C/min and soaking for 0.5h. Then, the glaze bodies were cooled at the cooling rate of 1°C/min and maintained at 1,080°C for 3h and then maintained at 980°C for 1h, respectively. From the experiment results, it was found that the crystallization temperatures (Tc) of franklinite (ZnFe2O4) and anorthite (CaAl2Si2O8) depend on the concentration of iron oxide content.


2008 ◽  
Vol 47-50 ◽  
pp. 833-836
Author(s):  
Dong Hui Liu ◽  
Xiao Juan Si ◽  
Jin Gao ◽  
Ling Ling Cao ◽  
Yi Min Wang

Polypropylene (PP)/ polyethylene terephthalate (PET) composite fibres modified by PP-g-AA as a compatilizer were prepared by melt extrusion in a twin screw extruder. The crystallization and melting behavior of PP fibre and PP/PET composite fibres were investigated with differential scanning calorimeter (DSC)[1]. The results indicate that addition of PET acts as nucleating agent on the PP/PET composite fibres and increases the crystallization temperature of PP. [2,3]The crystallization peak temperature (Tp) increased first and decreased afterwards with the increase of PET, indicating that small amount of PET would promote the crystallization of PP, but excessive would reduce the crystallinity.


2007 ◽  
Vol 105 (5) ◽  
pp. 3069-3076 ◽  
Author(s):  
Xudong Chen ◽  
Kun Yang ◽  
Gong Hou ◽  
Yujun Chen ◽  
Yeping Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document