Empirical Model for Dry Sliding Wear Behaviour of Centrifugally Cast Functionally Graded Al/SiCp Composite

2018 ◽  
Vol 786 ◽  
pp. 276-285 ◽  
Author(s):  
Islam M. El-Galy ◽  
Bassiouny I. Bassiouny ◽  
Mahmoud H. Ahmed

Horizontal centrifugal casting machine was adopted to fabricate tubes of functionally graded materials (FGM) made of commercially pure aluminum reinforced with different weight fractions of SiC particles. Tubes with 2.5, 5 and 10%wt. SiCpwere produced in the speed range 800 to 1100 rpm. Wear experiments involving dry sliding under different loading conditions were conducted on samples taken from three consecutive layers across the wall of the FGM tubes. Analysis of variance (ANOVA) was used to determine the significant FGM production parameters and wear test parameters (normal load and test duration) affecting the wear resistance of the samples. Obtained wear test results have been used to build a regression model to predict the expected weight loss across the wall thickness of the tube depending on the production parameters and the loading conditions.

2015 ◽  
Vol 830-831 ◽  
pp. 485-488
Author(s):  
A.G. Arsha ◽  
E. Jayakumar ◽  
T.P.D. Rajan ◽  
Ballembettu Chandrasekhar Pai

A390 functionally graded material (FGM) pistons were fabricated by centrifugal casting, where the silicon particles were segregated in the head portion of the pistons by appropriate design and their density differences. Centrifugal casting offers casting of cylindrical structures with gradation in its properties. In centrifugally cast A390, a suitable die design can lead to the formation of hard primary Si particles gradually distributed towards the head region producing a particle rich zone, transition zone and matrix rich zone. Microstructure and chemical composition analysis confirms the composition gradation. Hardness and wear test results revealed that the gradation positively helps to improve the desired properties with the presence of in-situ primary silicon reinforcements.


2015 ◽  
Vol 24 (6) ◽  
pp. 096369351502400 ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

Functionally graded aluminium LM25/silicon nitride composite was produced through stir casting followed by centrifugal casting and obtained a hollow cylindrical cast component with dimensions of 150 × 150 × 20 mm. The microstructural examination and the hardness test were carried out on the outer (1 mm) and inner surface (17 mm) as the function of radial distance from the outer periphery. The outer surface was observed with particle enriched region compared to inner surface and exhibited higher hardness. Hence the outer surface of the functionally graded composite was only further subjected to sliding wear test in pin-on-disc tribometer. The Central Composite Design in Response Surface Methodology was used to design the experiments for the selected parameters such as load (15–45 N), velocity (0.5–2.5 m/s) and sliding distance (500–2000 m). Regression test and Analysis of Variance were conducted to check the adequacy of the constructed model. The surface plots for wear rate showed that wear rate increased with increase in load and non-linearly varied with increase in velocity and sliding distance. Scanning Electron Microscopy analysis was conducted on the worn-out surfaces and observed mild to severe wear transition on increase of load.


2019 ◽  
Vol 285 ◽  
pp. 63-68 ◽  
Author(s):  
Mnel A. Abdelgnei ◽  
M. Zaidi Omar ◽  
Mariyam Jameelah Ghazali

Earlier work has shown that Al-5.7Si-2Cu-0.3Mg aluminium alloy is suitable for thixoforming process. Here, the dry sliding wear behaviour of the alloy, in the as-cast and thixoformed conditions were investigated. The cooling slope technique was used to produce the alloy with globular microstructure for the thixoforming process. Both the thixoformed and cast samples were subjected to T6 heat treatments prior to the wear tests. The tests were carried out using a pin-on-disc tribometer, against a hardened M2 tool steel disc of 62 HRC at different loads, under dry sliding conditions at fixed sliding speed and sliding distance of 1 m.s–1 and 5 km respectively. The microstructural response, worn surfaces were thoroughly and carefully examined using various methods such as scanning electron microscopy, energy dispersive spectroscopy, and differential scanning calorimetry. The density of the heat treated thixoformed alloys showed significant increase in the hardness property, among others, due to its reduced porosity. Their wear test results also observed that the weight loss of materials increase with an increase in the input load and the sliding distance for all samples. However, the as-cast alloy displayed higher wear rate compared with the thixoformed alloys. In general, the wear mechanisms showed a mixture of abrasive, oxidative and delamination wear (mild wear) at low applied loads and mainly an adhesive (severe wear) at high applied loads.


2018 ◽  
Vol 25 (2) ◽  
pp. 261-271 ◽  
Author(s):  
N. Radhika

AbstractHomogeneous and functionally graded LM25 aluminium (Al) composites were fabricated by incorporating silicon nitride (10 wt%, 40 µm) particles through liquid metallurgy and centrifugal casting, respectively. The performance of these composites was compared with unreinforced alloy. The microstructural behaviour of the surfaces of unreinforced alloy, homogeneous composite and functionally graded composite (outer, middle and inner surfaces) were examined through optical microscopy. These surfaces were also evaluated for mechanical properties. An abrasive wear test was conducted on all these surfaces to determine their effect on wear rate. The microstructural results revealed a particle-rich region at the outer surface of the functionally graded composite material and uniform dispersion of reinforcement particles in the homogeneous composite. The outer region of the functionally graded composite showed greater hardness and the homogeneous composite displayed higher tensile strength. The abrasive wear rate increased with an increase in load and decreased with an increase in speed, and the particle-rich outer surface showed a lower wear rate. Scanning electron microscopy analysis revealed a particle-rich outer surface of functionally graded composite with fewer scratches. Therefore, higher wear resistance was observed at the outer periphery of functionally graded composites and this property can be well-utilised in automotive tribo-components such as in cylinder liners for improved performance.


Author(s):  
K. Kartik Sriram ◽  
N. Radhika ◽  
Manu Sam ◽  
Shrihari S

Functionally graded material containing LM13 aluminium alloy as matrix and alumina as reinforcement (10 wt. %) was fabricated (Φout150 × Φin90 × 100 mm) by centrifugal casting. Samples were machined from the cylindrical cast along its longitudinal axis. Variation in hardness along the radial cross-sectional wall revealed 33.7% improvement at the outer periphery due to higher presence of alumina. This zone was preferred for dry sliding wear experiments, designed based on Taguchi L27 orthogonal array by varying the process parameters like sliding velocity, sliding distance and load using pin-on-disc tribometer. Analysis of variance revealed velocity as most influential wear factor, next to load. An optimal condition to minimise adhesive wear was determined at a load of 15 N, sliding velocity of 3.5 m/s and sliding distance of 1250 m. Scanning electron microscope analysis on abraded surfaces showed formation of tribolayer at high velocities and delamination at high loads.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Manu Sam ◽  
N. Radhika

A functionally graded Cu–10Sn–5Ni metal matrix composite (MMC) reinforced with 10 wt % of Al2O3 particles was fabricated using the centrifugal casting process with dimension Φout100 × Φin85 × 100 mm. The mechanical and wear resistance of the composite has been enhanced through heat treatment. Samples from of the inner zone (9–15 mm) were considered for heat treatment, as this zone has higher concentration of less dense hard reinforcement particles. The samples were solutionized (620 °C/60 min) and water quenched followed by aging at different temperatures (400, 450, and 550 °C) and time (1–3 h). Optimum parametric combination (450 °C, 3 h) with maximum hardness (269 HV) was considered for further analysis. Dry sliding wear experiments were conducted based on Taguchi's L27 array using parameters such as applied loads (10, 20, and 30 N), sliding distances (500, 1000, and 1500 m), and sliding velocities (1, 2, and 3 m/s). Results revealed that the wear rate increased with load and distance whereas it decreased initially and then increased with velocity. Optimum condition for maximum wear resistance was determined using signal-to-noise (S/N) ratio. Analysis of variance (ANOVA) predicted the major influential parameter as load, followed by velocity and distance. Scanning electron microscope (SEM) analysis of worn surfaces predicted the wear mechanism, observing more delamination due to increase in contact patch when applied load increased. Results infer 8% increase in hardness after heat treatment, making it suitable for load bearing applications.


2020 ◽  
Vol 37 ◽  
pp. 37-45
Author(s):  
Eshan S. Agrawal ◽  
Vinod B. Tungikar

TiC particles are reinforced with Al 7075 to develop metal matrix composite. Special purpose die is fabricated for centrifugal casting machine for the preparation of composite material. The tribological properties such as wear rate and coefficient of friction are determined by using pin on disc wear testing machine. Weight percentage of TiC, applied load, sliding distance are considered as parameters for the wear test. The results show that the wear resistance of the developed composite increases with increase of TiC percentage. Wear rate of Al-TiC composite is observed to be reduced by 11%, 31% and 42% with increasing percentage of TiC by 2.5%, 5% and 7.5% respectively. SEM and EDS analysis are used for morphological study of the worn surfaces of composite. Keywords: Composites, Al-TiC, Wear, Coefficient of Friction (CoF), SEM


Sign in / Sign up

Export Citation Format

Share Document