V-Defect and Dislocation Analysis in InGaN Multiple Quantum Wells on Patterned Sapphire Substrate

2018 ◽  
Vol 787 ◽  
pp. 37-41
Author(s):  
Huan You Wang ◽  
Qiao Lai Tan ◽  
Gui Jin

InGaN/GaN multiquantum well (MQW) structures have been grown on cone-shaped patterned sapphire substrates (CPSS) by metalorganic chemical vapor deposition (MOCVD). From the transmission electron microscopy (TEM) results, we found that most of the threading dislocations (TDs) in the trench region of the CPSS were bent by lateral growth mode. Also the staircase-like TDs were observed near the slant region of the cone pattern, they converged at the slope of the cone patterned region by staircase-upward propagation, which seems to effectively prevent TDs from vertical propagation in the trench region. The associated dislocation runs up into the overgrown GaN layer and MQW, and some (a+c) dislocations were shown to decompose inside the multi-quantum well, giving rise to a misfit segment in the c-plane and a V-shape defect. From cross-sectional TEM, we found that all V defects are not always connected with TDs at their bottom, some V defects are generated from the stacking mismatch boundaries induced by stacking faults which are formed within the MQW due to the strain relaxation.

CrystEngComm ◽  
2020 ◽  
Author(s):  
Yuanhao Sun ◽  
Fujun Xu ◽  
Na Zhang ◽  
Jing Lang ◽  
Jiaming Wang ◽  
...  

Growth of AlGaN-based multiple quantum wells (MQWs) has been attempted on nano-patterned sapphire substrates (NPSSs). By adopting a critical-temperature approach and optimizing the growth conditions of V/III ratio and Si...


2010 ◽  
Vol 31 (8) ◽  
pp. 842-844 ◽  
Author(s):  
Sang-Mook Kim ◽  
Hwa Sub Oh ◽  
Jong Hyeob Baek ◽  
Kwang-Ho Lee ◽  
Gun Young Jung ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Jianjun Zhu ◽  
...  

Abstract Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikolaj Grabowski ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Artur Lachowski ◽  
Julita Smalc-Koziorowska ◽  
...  

AbstractThe aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 698
Author(s):  
Wenwang Wei ◽  
Yi Peng ◽  
Jiabin Wang ◽  
Muhammad Farooq Saleem ◽  
Wen Wang ◽  
...  

AlN epilayers were grown on a 2-inch [0001] conventional flat sapphire substrate (CSS) and a nano-patterned sapphire substrate (NPSS) by metalorganic chemical vapor deposition. In this work, the effect of the substrate template and temperature on stress and optical properties of AlN films has been studied by using Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible spectrophotometer and spectroscopic ellipsometry (SE). The AlN on NPSS exhibits lower compressive stress and strain values. The biaxial stress decreases from 1.59 to 0.60 GPa for AlN on CSS and from 0.90 to 0.38 GPa for AlN on NPSS sample in the temperature range 80–300 K, which shows compressive stress. According to the TEM data, the stress varies from tensile on the interface to compressive on the surface. It can be deduced that the nano-holes provide more channels for stress relaxation. Nano-patterning leads to a lower degree of disorder and stress/strain relaxes by the formation of the nano-hole structure between the interface of AlN epilayers and the substrate. The low crystal disorder and defects in the AlN on NPSS is confirmed by the small Urbach energy values. The variation in bandgap (Eg) and optical constants (n, k) with temperature are discussed in detail. Nano-patterning leads to poor light transmission due to light scattering, coupling, and trapping in nano-holes.


2011 ◽  
Vol 480-481 ◽  
pp. 629-633
Author(s):  
Wen Teng Chang ◽  
Yu Ting Chen ◽  
Chung Chin Kuo

Five-period hydrogenated silicon carbide (SiC) multiple quantum wells with silicon dioxide (SiO2) or silicon nitride (SiN) dielectric that were synthesized by high density plasma chemical vapor deposition were studied using photoluminescence (PL) spectroscopy to understand its blue shift. Rapid thermal annealing induced significant blue shifting in the PL spectra after fluorine ion implantation due to crystallization. The thinning of the SiC causes blue shift due to the quantum confinement effect. The higher PL intensity of the amorphous SiC:H in SiO2 than in SiC/SiN may be attributed to the high number of non-radiative sites on its surface. Annealing with nitrogen may cause impurities in SiC/SiO2, thereby broadening the PL peak.


2021 ◽  
Vol 21 (9) ◽  
pp. 4881-4885
Author(s):  
Seung-Jae Lee ◽  
Seong-Ran Jeon ◽  
Young Ho Song ◽  
Young-Jun Choi ◽  
Hae-Gon Oh ◽  
...  

We report the characteristics of AlN epilayers grown directly on cylindrical-patterned sapphire substrates (CPSS) by hydride vapor-phase epitaxy (HVPE). To evaluate the effect of CPSS, we analyzed the threading dislocation densities (TDDs) of AlN films grown simultaneously on CPSS and flat sapphire substrate (FSS) by transmission electron microscopy (TEM). The corresponding TDD is measured to be 5.69 x 108 cm−2 for the AlN sample grown on the CPSS that is almost an order of magnitude lower than the value of 3.43 × 109 cm−2 on the FSS. The CPSS contributes to reduce the TDs originated from the AlN/sapphire interface via bending the TDs by lateral growth during the coalescence process. In addition, the reduction of direct interface area between AlN and sapphire by CPSS reduce the generation of TDs.


Sign in / Sign up

Export Citation Format

Share Document