Calculation of Diffusion Coefficients in γ-Ni

2019 ◽  
Vol 795 ◽  
pp. 15-21
Author(s):  
Yuan Liu ◽  
Qin Sheng Wang ◽  
Rachel C. Thomson ◽  
Steven Kenny

A model has been developed to predict the interdiffusion behaviour of elements between a substrate and a coating. This model, however, relies on knowing accurate diffusion coefficients. However, only limited diffusion data are available in the literature. Recently, it has been demonstrated that Density Functional Theory (DFT) can be used to calculate relevant diffusion coefficients with reasonable accuracy. According to the vacancy diffusion mechanism , diffusion coefficient has an Arrhenius form. The diffusion activation energy can be written as a sum of the diffusion energy barrier and the vacancy formation energy adjacent to a solute.

2019 ◽  
Vol 31 (1) ◽  
pp. 28-39
Author(s):  
Li Yang ◽  
Li Xiaoyan ◽  
Peng Yao

Purpose The purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy. Design/methodology/approach The diffusion behaviors of different atoms at the Cu/Cu3Sn interface are analyzed, and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy are obtained using molecular dynamics simulation. The nudged elastic band method is used to evaluate diffusion energy barrier for Cu/Cu3Sn system. Findings It is found that the vacancies in the Cu/Cu3Sn interface promote the interfacial diffusion, and the formation energy of Cu vacancy in the Cu crystal is larger than that in Cu3Sn crystal. In addition, the formation energies of Cu1 vacancy and Cu2 vacancy are close to each other in Cu3Sn crystal, and they are all less than the formation energy of Sn vacancy. Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface are calculated, and the results show that the vacancy diffusion activation energy of Sn was higher than that of Cu. Finally, by comparison of diffusion activation energies of different diffusion mechanisms, Cu→Cu1vac is the most possible migration path at all temperatures. Originality/value It is concluded that the vacancies in Cu/Cu3Sn interface promote interfacial diffusion, and the activation energy of vacancy diffusion in most diffusion mechanisms decreases with the increase of temperature.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


2016 ◽  
Vol 18 (39) ◽  
pp. 27226-27231 ◽  
Author(s):  
Kieu My Bui ◽  
Van An Dinh ◽  
Susumu Okada ◽  
Takahisa Ohno

Based on density functional theory, we have systematically studied the crystal and electronic structures, and the diffusion mechanism of the NASICON-type solid electrolyte Na3Zr2Si2PO12.


2016 ◽  
Vol 15 (02) ◽  
pp. 1650012 ◽  
Author(s):  
Jiping Cao ◽  
Yali Liu ◽  
Aijuan Shi ◽  
Yuan Yuan ◽  
Mingliang Wang

The reaction mechanisms between 2, 4-Diisocyanatotolune (2, 4-TDI) and cellulose have been investigated using the density functional theory at the B3LYP/6-31[Formula: see text]G (d, p) level. The calculations show that the direct addition of 2, 4-TDI and cellulose possesses an unrealistically high barrier of 32–34[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. With a neighboring [Formula: see text]-d-glucose serving as a proton transporter by forming a flexible six-membered ring transition state, the energy barrier of the reaction is significantly reduced to 16–18 kcal[Formula: see text]mol[Formula: see text], which is in a good accordance with the experimental activation energy of 13.9–16.7[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is indicated that the reaction between 2, 4-TDI and cellulose is auto-catalyzed with a neighboring [Formula: see text]-d-glucose acting as a reactive catalyst.


Author(s):  
Harry J. Stroud ◽  
Chris E. Mohn ◽  
Jean-Alexis Hernandez ◽  
Neil L. Allan

The energy landscape of the fast-ion conductor Bi 4 V 2 O 11 is studied using density functional theory. There are a large number of energy minima, dominated by low-lying thermally accessible configurations in which there are equal numbers of oxygen vacancies in each vanadium–oxygen layer, a range of vanadium coordinations and a large variation in Bi–O and V–O distances. By dividing local minima in the energy landscape into sets of configurations, we then examine diffusion in each different layer using ab initio molecular dynamics. These simulations show that the diffusion mechanism mainly takes place in the 〈110〉 directions in the vanadium layers, involving the cooperative motion of the oxide ions between the O(2) and O(3) sites in these layers, but not O(1) in the Bi–O layers, in agreement with experiment. O(1) vacancies in the Bi–O layers are readily filled by the migration of oxygens from the V–O layers. The calculated ionic conductivity is in reasonable agreement with the experiment. We compare ion conduction in δ-Bi 4 V 2 O 11 with that in δ-Bi 2 O 3 . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 197
Author(s):  
Si-Mei Fu ◽  
Yue Zhao ◽  
Jiang-Tao Liu ◽  
Wen-Sheng Liang ◽  
Gang-Sen Li ◽  
...  

Benzoic acid (C6H5COOH) is selected as coal-based model compound with Co compounds (Co3O4, CoO and Co) as the catalysts, and the influence of the valence state change of the catalyst for pyrolysis process is investigated using density functional theory (DFT). DFT results shows that the highest energy barrier of C6H5COOH pyrolysis is in the following order: Ea(CoO) <Ea(Co3O4) <Ea(no catalyst) <Ea(Co). In general, Co3O4 catalyst accelerates C6H5COOH pyrolysis. Then, the catalytic activity further increases when Co3O4 is reduced to CoO. Finally, Co shows no activity for C6H5COOH pyrolysis due to the reduction of CoO to metallic Co.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850178 ◽  
Author(s):  
Xuefeng Lu ◽  
Xu Gao ◽  
Junqiang Ren ◽  
Cuixia Li ◽  
Xin Guo ◽  
...  

Bandgap tailoring of [Formula: see text]-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al–P and As–P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al–P and Al–As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al–P and Al–As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3744
Author(s):  
Jing Liu ◽  
Shike Li ◽  
Yang Wang

The diffusion characteristics of CH4, CO2, and N2 in coal are important for the study of CO2-enhanced coalbed methane (CO2-ECBM) recovery, which has become the most potential method for carbon sequestration and natural gas recovery. However, quantitative research on the diffusion characteristics of CH4 and the invasive gases (CO2 and N2) in coal, especially those in micropores, still faces enormous challenges. In this paper, the self-, Maxwell’s, and transport diffusions of CO2, CH4, and N2 in mid-rank coal vitrinite (MRCV) macromolecules were simulated based on the molecular dynamics method. The effects of the gas concentration, temperature, and pressure on the diffusion coefficients were examined via the comparison of various ranks. The results indicated that the diffusion coefficients have the order of D(N2) > D(CO2) > D(CH4) in their saturated adsorption states. However, when MRCV adsorbed the same amounts of CH4, CO2, and N2, the self- and transport diffusion coefficients followed the order of DS(N2) > DS(CO2) > DS(CH4) and Dt(CO2) > Dt(N2) > Dt(CH4), respectively. Independent of the gas species, all these diffusion coefficients decreased with increasing gas concentration and increased with increasing temperature. In the saturated adsorption state, the diffusion activation energies of CH4, CO2, and N2 were ordered as CH4 (27.388 kJ/mol) > CO2 (11.832 kJ/mol) > N2 (10.396 kJ/mol), indicating that the diffusion processes of CO2 and N2 occur more easily than CH4. The increase of temperature was more conducive to the swelling equilibrium of coal. For the pressure dependence, the diffusion coefficients first increased until the peak pressure (3 MPa) and then decreased with increasing pressure. In contrast, the diffusion activation energy first decreased and then increased with increasing pressure, in which the peak pressure was also 3 MPa. The swelling rate changed more obviously in high-pressure conditions.


Sign in / Sign up

Export Citation Format

Share Document