Cr12MoV Die Repair Experiment Based on Laser Cladding with Wire

2019 ◽  
Vol 814 ◽  
pp. 137-143 ◽  
Author(s):  
Yan Yin ◽  
Yun Wang ◽  
Zhong Rui Tan ◽  
Wei Jie Yu

In this paper, SKD11 steel wire has been deposited on Cr12MoV plate using Nd: YAG pulsed laser for repairing the die surface damage. The effects of laser power, wire feeding speed, scanning speed and surface roughness on clad geometry have been studied with OM and LSCM. hardness distribution of the cladding layer is also obtained by microhardness tester. Experiment results indicate that the surface roughness is important for clad characteristics due to the light trapping effect. With the increases of roughness, the laser absorption ratio can be raised, both the clad depth and the dilution rate increase, the height decreases. The essence of influence mechanism is effective body energy Ev and specific filling rate ω, and can be used as critical process factors. When Ev is 80~100 J/mm3 and ω is 1~3, a flat cladding layer can be obtained with low dilution, less fusion defects and high hardness. Keywords: Cr12MoV, laser cladding with wire, surface roughness, clad geometry, hardness

2020 ◽  
Vol 990 ◽  
pp. 67-72 ◽  
Author(s):  
Bin Han ◽  
Hui Wang ◽  
Jia Yi Lin ◽  
Xi Hao Liu

Laser cladding technology is widely used in the surface modification of parts due to its excellent properties such as high hardness, high wear resistance and corrosion resistance. Extends the life of these parts under normal use conditions, greatly reducing production costs. In this paper, the influence of different parameters such as laser cladding process parameters—laser power and scanning speed, and their interaction on the performance of mold cladding layer is discussed, and the future development direction of laser cladding technology in mold is prospected.


2012 ◽  
Vol 499 ◽  
pp. 147-151
Author(s):  
Jin Sun ◽  
Singare Sekou

This study investigates the effect of wire feeding direction, angle, wire feeding speed, laser scanning speed and laser power in a high power Nd:YAG laser direct metal deposition process for single and multilayered clad/parts. The lap cladding experiment using 500 W Nd:YAG laser is designed to study the best lap rate of 45 carbon steel. The microstructure and micro hardness of the melting track shows that dense metal microstructure can be obtained using laser cladding.


2011 ◽  
Vol 138-139 ◽  
pp. 732-736
Author(s):  
Ba Sheng Ouyang ◽  
Run Juan You

Cladding experiment with parameter variations was presented to manufacture the better processing property coating by laser cladding self-fused Ni-based ceramic powder of ZrO2 composite on the excircle surface of 304 SUS. The influence of the laser process parameters on macroscopic view, microstructure and micro-hardness of the laser cladding layers were investigated. The results show that we can get better coating when laser power is 1.5KW, and that the cladding layer microstructure has the trend of refined framework with the growing of scanning speed; micro-hardness will be higher and distribution from substratum to surface with little fluctuate by optimizing scanning speed.


Author(s):  
Shichao Zhu ◽  
Wenliang Chen ◽  
Xiaohong Zhan ◽  
Liping Ding ◽  
Junjie Zhou

Laser cladding repair is an advanced technology for repairing Invar alloy moulds; however, the influences of various processing parameters on the quality of the Invar alloy moulds have yet to be determined. To explore the optimisation of laser cladding repair parameters, analyses of the geometric features and microstructure of the cladding layer were conducted. First, the influences of different powder feeding rates and scanning speeds on the dilution rate of the substrate were investigated by establishing a mathematical model of the laser power attenuation. Next, the influences of the parameters on the geometric features of the cladding layer were analysed. Finally, the influences of the parameters on the microstructure of the cladding layer were evaluated. At a laser power of 2300 W, a scanning speed of 3 m/min, and a powder feeding rate of 9 g/min, the best results of the width, height, dilution rate, roughness, and contact angle of the cladding layer were obtained. The results of this study indicated that excellent metallurgical bonding occurred between the cladding layer and the interface layer, and that the intended geometric features and desired microstructure of the cladding layer were obtained.


2009 ◽  
Vol 76-78 ◽  
pp. 38-42 ◽  
Author(s):  
Xavier Kennedy ◽  
S. Gowri

Advanced structural ceramics have been increasingly used in automotive, aerospace, military, medical and other applications due to their high temperature strength, low density, thermal and chemical stability. However, the Grinding of advanced ceramics such as alumina is difficult due to its low fracture toughness and sensitivity to cracking, high hardness and brittleness. In this paper, surface integrity and material removal mechanisms of Alumina ceramics ground with SiC abrasive belts, have been investigated. The surface damage have been studied with scanning electron microscope (SEM). The significance of grinding parameters on the responses was evaluated using Signal to Noise ratios.This research links the surface roughness and surface damages to grinding parameters. The optimum levels for maximum material removal and surface roughness been discussed.


2013 ◽  
Vol 395-396 ◽  
pp. 1127-1131 ◽  
Author(s):  
Wei Zhang

The experiments of laser cladding on the surface of 20 steel were made. High-chromium (Cr) cast iron powder was used as cladding material. The microstructure and hardness of laser cladding layers under different scanning speed were studied. The experiments showed that high-Cr cast iron cladding layer had better properties such as minute crystals, high density, no crack, no gas cavity and good metallurgical bonding with base metal. When the scanning speed was low, such as 10mm/min, the microstructure of cladding layer was cellular dendrite. There were much carbide with the shape of fish-bone distributing among cellular grains. Under higher scanning speed (from 100mm/min to 300mm/min), needle-shaped primary cementite would come into being. When laser scanning speed was 500mm/min, the carbide of cladding zone was very thin. With the increasing of laser scanning speed, the average hardness of cladding zone increased from 388HV0.2 to 580 HV0.2.


2015 ◽  
Vol 723 ◽  
pp. 852-855
Author(s):  
Ying Chun Wang ◽  
Xiang Fei Lv ◽  
Deng Jie Zhu ◽  
Shao Min Qu

Laser surface cladding is a material processing technique to overlay the precursor material with the substrate to form a sound chemical and metallurgical bonding. Recently, laser cladding technique has been introduced in the bioceramic coating field. This paper presents a new technology to obtain bioceramic composite coating on Ti6Al4V substrate by Nd-YAG laser cladding. The microstructures of the mixed powders and cladding layer were investigated by scanning electron microscopy, and the compositions were analyzed by electron diffraction spectroscopy. The phases of the mixed powders and cladding layer were clarified by X-ray diffraction technology. Composite coating including HAP,Ca2P2O7,Ca3(PO4)2 and calcium titanates was successfully obtained by Nd-YAG laser cladding with pre-depositing mixed powders of CaHPO4·2H2O and CaCO3 directly on Ti6Al4V substrate. The average grain size of the mixed powders is 3μm from the image analyse software. The most important parameter that affected the completion of laser cladding was the scanning speed.


2014 ◽  
Vol 551 ◽  
pp. 3-6
Author(s):  
Shu Guo Zhao ◽  
Xiao Min Yao ◽  
Rui Li

The Cubic boron nitride (CBN) coating are prepared by laser cladding on the TC11 surface.The hardness of cladding coating were researched by means of mechanical property testing.The result indicated that the coating micro-hardness increases with increasing laser power when the other parameters are fixed.With the laser power increasing,Injection of energy increases,The reinforced phase increased,microhardness along with it enhancement.With the increase of the scanning speed within chose, the microstructure of the cladding layer changes tiny and uniform,the microhardness were increased,The hardness was increased greatly which after Laser hardening. The maximum values of them are as about five times as that of the substrate.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2061 ◽  
Author(s):  
Jiang Ju ◽  
Yang Zhou ◽  
Maodong Kang ◽  
Jun Wang

The mould foot roller is a key component of a continuous casting machine. In order to investigate the possibility of using laser cladding to repair mould foot roller, Fe-based powders and 42CrMo steel are used in this work. The laser cladding process parameters were optimized by orthogonal experiments. The chemical compositions, microstructure, properties of the cladding layer under the optimum process parameters, and substrate were systematically investigated by using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness test, wear test, and salt spray corrosion test. The results indicate that the primary factor affecting the width and depth of the cladding layer is laser power. The scanning speed also has a significant effect on the height of the cladding layer. The optimum process parameters for repairing the mould foot roller are 2 kW laser power, 4 mm/s scanning speed, and 15 g/min feeding rate of powder. Along the depth direction of the cladding layer, the microstructure of the coating gradually transforms from plane crystal, cell grains, or dendrites to equiaxed grains. The matrix is mainly martensite with retained austenite; the eutectic phase is composed of netlike M2B, particulate M23(C,B)6, and M7(C,B)3 phase. The hardness of the cladding layer is significantly improved, about three times that of the substrate. The weight loss of the cladding layer is just half that of the substrate. Its wear resistance and corrosion resistance have been significantly improved. The work period of the laser cladding-repaired foot roller is much longer than for the surfacing welding-repaired one. In summary, laser cladding technology can increase the life of mould foot rollers.


2013 ◽  
Vol 483 ◽  
pp. 28-33 ◽  
Author(s):  
Chang Lin He ◽  
Gong Zhang ◽  
Ying Ping Wang ◽  
Lei Zheng ◽  
Xian Shuai Chen ◽  
...  

This paper gets a further study to cladding of Ni-based Titanium Carbide in the surface of die steel of 718, This paper introduces the effect of laser process parameters on the titanium carbide and nickel solid solution and cemented carbide in cladding layer; on that basis, this paper studied the effect of the different of powder paving thickness, laser power and scanning velocity and other parameters on microstructure and properties of cladding layer. By controlling the powder-bed depth, using suitable laser cladding power and scanning speed, we can get the cladding layer of compact structure, no holes or no cracks. Experiments were carried out to get suitable process parameters, and analyzed its mechanism. It has certain significance guiding to improve the laser cladding of 718 die steel quality,


Sign in / Sign up

Export Citation Format

Share Document