The Hybrid Compression Moulding of Structural Composite Materials for Automotive Applications

2020 ◽  
Vol 843 ◽  
pp. 3-8 ◽  
Author(s):  
Helena C. Simmonds ◽  
Neil C. Reynolds ◽  
Kenneth N. Kendall

The Innovate-UK-funded Composite Lightweight Automotive Suspension System (CLASS) project, led by Ford Motor Company and partnered by Gestamp UK, GRM Consulting and WMG, investigated the use of carbon fibre reinforced composite materials to decrease the weight of a complex automotive rear suspension component in support of reduction in vehicle emissions. A multi-material design comprising discontinuous fibre composite (C-SMC), aligned fibre composite laminate (prepreg) and steel was developed. A high volume hybrid compression moulding manufacturing process was developed at WMG, achieving total press cycle times of around 5 minutes. Prototype parts were manufactured and evaluated using materials characterisation techniques to validate the manufacturing methods. The optimum C-SMC charge pattern was investigated to achieve complete fill with minimal pre-processing. Destructive and nondestructive analysis of the hybrid parts was performed to understand resultant hybrid material macrostructure. This innovative design and manufacturing process resulted in a component 35% lighter than the original multi-piece steel design.

2009 ◽  
Vol 62-64 ◽  
pp. 700-707
Author(s):  
Ishaya Musa Dagwa ◽  
A.O. Akii Ibhadode

This paper focuses on the design of a sub-press mould mounted on a 100-Tonne hydraulic press during compression moulding of composite materials manufacturing process. The sub-press consisting of platens, punch and mould, and guide columns were designed using Microsoft Visual Basic software to minimize time wastages in trail-and-error procedures and mould modifications resulting after the mould is manufactured. Graphical representations of variables which were used in the design such as: platen thickness, guide pin dimensions, clamping force, heat supply, heat losses, and heating element were obtained. The program developed was tested on a solved example in a standard textbook and the result obtained compared well with the result in the book.


2019 ◽  
Vol 820 ◽  
pp. 1-8 ◽  
Author(s):  
Zoubida Sekkate ◽  
Ahmed Aboutajeddine ◽  
Abbass Seddouki

Composite materials offer potential avenues for tailoring materials with desired properties intended to innovative applications. To speed up this scheme, trial and error practice is evolving to a more rational and organized material design process. This trend depends on our ability to bridge the micro-scale to the system level. An important brick of this process is constituted of micromechanical models that bridge the gap between micro and macro scales in materials. Unfortunately, to forecast the behavior of complex composite materials microstructures, these models remain rudimentary, particularly for the nonlinear regime. Accordingly, our ambition is to highlight the limitations of existing micromechanical models and examine their respective capabilities to predict elastoplastic behavior of composite materials. The assessment reveals that in order to reduce the disparity between micromechanical models predictions and corresponding numerical or experimental results, new robust and efficient micromechanical models are needed. These models have to accurately describe different interactions in the composite and deal with multiphase and two-phase composites with high volume fractions under different loading paths.


2019 ◽  
Vol 140 ◽  
pp. 02004
Author(s):  
Aleksey Ignatov ◽  
Rustam Subkhankulov

Numerous studies in application of modern composite materials show that their advantages can be successfully implemented in manufacturing «smart» products. This study proposes an improved technological method of manufacturing multilayer environmentally friendly products with a variable cross section, which allows us to expand the possibilities of using modern polymer composite materials (PCM). The technology allows manufacturing products of the most complex geometric shapes, such as wind turbine blades. The aim of the study is the technological support of engineering production in the manufacture of multilayer products of variable cross section made from PCM. Scientific novelty consists in identifying the patterns of implementation and management of the manufacturing process of multilayer products of variable cross-section, and establishing the influence of structural and technological parameters of the manufacturing process on their operational characteristics. The relationship between the pressure of a hot directed air stream and the volume fraction of pores in the hardened material of a multilayer composite product with a variable cross section during layer-by-layer application is investigated. During the study, fundamental and applied principles of mechanical engineering technology, material resistance, adhesion theory, mathematical statistics tools and software were used to process the results of the experiment. Based on the results of laboratory studies, a methodology has been developed for effective prediction of pore content in the manufacturing of composite products. The introduction of the presented technology and the corresponding original methodology into production will reduce the complexity and energy costs of manufacturing composite products, improve their quality and reduce the impact of toxic components from composite materials on workers.


2021 ◽  
Vol 887 ◽  
pp. 105-109
Author(s):  
A.M. Iuvshin ◽  
Y.S. Andreev ◽  
S.D. Tretyakov

This paper studies deployable elements which are used in satellites and different terrestrial antenna devices. Many deployable elements are made from steel or thermoset polymer composite materials and have the following disadvantages like length limitation of deployable elements, labour intensity of manufacturing process of deployable elements etc. For this purpose a deployable tube boom element was chosen and a forming method for manufacturing deployable tube element from thermoplastic polymer composite material was developed.


Sign in / Sign up

Export Citation Format

Share Document