Biofilm Formation of Cariogenic Bacteria on Vanillin-Incorporated Orthodontic Retainer PMMA Resin

2020 ◽  
Vol 853 ◽  
pp. 31-35
Author(s):  
Sroisiri Thaweboon ◽  
Mari Fujita ◽  
Keiji Nagano ◽  
Boonyanit Thaweboon

Orthodontic retainers made of poly methyl methacrylate (PMMA) resin are generally used after finished orthodontic treatment to hold teeth in the right position and avoid the shift out from the alignment. The use of these devices can place patients at greater risk of dental caries through the biofilm accumulation of caries-associated bacteria and food debris on the rough surfaces or inherent porosities of PMMA surfaces of appliances themselves. Vanillin, the major component of flavoring agent vanilla, has been demonstrated to have antimicrobial activity against many types of microorganisms. This study aimed to evaluate antimicrobial property of vanillin-incorporated orthodontic retainer PMMA resin on the biofilm formation of cariogenic bacteria. The self-curing orthodontic retainer PMMA resin samples were produced according to the percentage of vanillin adding (0%, 0.1% and 0.5% vanillin) (SCG Chemicals, Thailand). All samples were coated with sterile unstimulated saliva. Then the cariogenic bacterial suspensions of Streptococcus mutans ATCC 25715, Streptococcus sobrinus ATCC 33478, Lactobacillus casei ATCC 334 and Lactobacillus acidophilus ATCC 314 were added and incubated at 37°C in 5% CO2 atmosphere for 48 h to allow the biofilm formation. The amount of vital biofilm was determined by WST Microbial Cell Counting Kit (Dojindo Molecular Technologies, USA) at 460 nm. One-way ANOVA and Turkey’s test were employed for the statistical analysis. A significant inhibitory effect against all tested bacteria was observed in 0.5% vanillin incorporated samples compared with 0% vanillin. The percentage of biofilm reduction was 23-45%. The adding of 0.1% vanillin showed suppressive effect only on Lactobacillus spp. In conclusion, the incorporation of 0.5% vanillin to self-curing orthodontic retainer PMMA resin could significantly inhibit biofilm formation of cariogenic bacteria (S. mutans, S. sobrinus, L. casei and L. acidophilus). Using this PMMA resin, removable orthodontic appliances with antimicrobial property can be applied to prevent dental caries or tooth demineralization in orthodontic patients.

2019 ◽  
Vol 801 ◽  
pp. 9-14 ◽  
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Removable orthodontic appliances made of poly methyl methacrylate (PMMA) resin are commonly used after complete orthodontic treatment to keep teeth in the right position and prevent the shift out from the alignment. The use of these appliances can place patients at increased risk of dental caries through the biofilm accumulation ofStreptococcus mutans, caries-associated bacteria, on the surfaces of appliance themselves. Moreover, their rough surfaces or intrinsic porosities of PMMA enhance a condition for plaque aggregation, altering the oral microflora and limiting the washing out action of saliva on teeth and mucosal tissues, subsequently bringing about enamel demineralization and gingival inflammation. Cleaning by brushing or using chemical disinfectants is necessary for hygiene maintenance of the appliances, but requires patient cooperation, which is uncertain. Vanillin is a natural phenolic aldehyde which is used widely as a flavoring agent in various foods. It has been reported by many studies to exhibit antimicrobial activity. The aim of the present study was to evaluate antimicrobial property of vanillin-incorporated orthodontic PMMA resin onS. mutansbiofilm formation. The self-curing orthodontic PMMA resin samples (SCG Chemicals, Thailand) were prepared according to the percentage of vanillin incorporation (0%, 0.1% and 0.5% vanillin). Another group of commercial resin samples without vanillin (Dentsply Caulk, USA) was prepared in the same manner. All samples were coated with sterile unstimulated saliva collected from three healthy adult volunteers at 37 °C for 60 min. TheS. mutansbiofilm formation was done with the 107colony forming unit (CFU)/m of bacterial suspension in 96-well plate and incubated at 37°C in 5% CO2 atmosphere for 24 h. The amount of biofilm was quantified by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 450 nm. All tests were performed in triplicate on three separate occasions. One-way ANOVA and Turkey’s test were used for the statistical analysis. A significant inhibitory effect was observed in 0.5% vanillin incorporated samples at 48 h compared with 0% vanillin and commercial samples. The percentage of biofilm reduction was 30%. In conclusion, the incorporation of vanillin to self-curing orthodontic PMMA resin could significantly inhibit biofilm formation ofS. mutans. Using this PMMA resin, removable orthodontic appliances with antimicrobial property can be applied to prevent dental caries or tooth demineralization in orthodontic patients.


2021 ◽  
Vol 889 ◽  
pp. 107-111
Author(s):  
Boonyanit Thaweboon ◽  
Sroisiri Thaweboon

Tooth decay or dental caries is an important oral health problem involving people of all age groups. The disease is the outcome of the demineralize process in which aciduric and acidogenic bacteria in a biofilm decompose tooth structure. Dental sealant, a resin material, which is applied on the occlusal pit and fissure surfaces of the teeth as a protective layer has been commonly used to prevent dental caries. However, the microbial effect on food residue is found to be a major cause of microleakage of sealant and secondary caries. Several types of antimicrobial agents were introduced to increase the caries preventive effect of dental sealants. Vanillin, the main component of flavoring agent vanilla, has been found to have antimicrobial property against Gram-positive and Gram-negative bacteria. The objective of this study was to investigate the antimicrobial effect of vanillin-incorporated dental sealant against biofilm formation of cariogenic bacteria. Dental sealant resin samples (Clinpro; 3M ESPE, USA) were prepared in 96-well plate in accordance with the amount of vanillin adding (0%, 0.5%, 1% and 5% vanillin). The cariogenic bacterial suspensions of Streptococcus mutans ATCC 25175 and Lactobacillus casei ATCC 334 were added to saliva-coated samples and incubated at 37°C in 5% CO2 atmosphere for 48 h to allow the biofilm formation. The quantity of vital biofilm was determined by WST Microbial Cell Counting Kit (Dojindo Molecular Technologies, USA) at 460 nm. One-way ANOVA and Tukey’s test were applied to the statistical analysis. A significant inhibitory effect against L. casei biofilm was observed in all vanillin incorporated samples (0.5%, 1% and 5% vanillin) compared with samples without vanillin. The percentage of biofilm reduction was 32-39%. For S. mutans, the suppressive effect was noticed only at >1% vanillin with 18-25% biofilm reduction. In conclusion, the incorporation of vanillin to dental sealants could decrease biofilm formation of cariogenic bacteria (S. mutans and L. casei). The use of dental sealants containing vanillin could be a promising measure to prevent dental caries due to their antibacterial biofilm formation property.


2020 ◽  
Vol 862 ◽  
pp. 130-134
Author(s):  
Sroisiri Thaweboon ◽  
Pakpoom Kedcharoen ◽  
Natthamet Wongsirichat ◽  
Boonyanit Thaweboon

Surgical obturators are important oral prostheses given to patients after surgical treatment to minimize scar contracture and esthetic disfigurement that may affect patients’ functional appearance and psychological health. Poly-methyl methacrylate (PMMA) resin has been the material generally used for fabrication of surgical obturator. However, wearing of this resin appliance can raise a condition for microbial biofilm accumulation and infection of the patients due to the rough surfaces and internal porosities of the resin. Vanillin-incorporated heat-cured and auto-polymerized PMMA resin have been developed and demonstrated to have antimicrobial activity against several types of microorganisms. This study aimed to examine antimicrobial properties of vanillin-incorporated auto-polymerized surgical obturator resin on the biofilm formation of Streptococcus mutans and Candida glabrata. The auto-polymerized PMMA resin samples (Orthocryl® EQ, Germany) were prepared with vanillin incorporation (0.1% and 0.5% vanillin). All samples were coated with sterile saliva and incubated at 37 °C for 60 min. The suspensions of S. mutans ATCC 25715 and C. glabrata ATCC 15126 (107 colony forming unit/mL) were prepared using McFarland standard No.1. Microbial biofilm formation was done in 96-well plate at 37°C for 24 h. The total vital biofilm formation was evaluated by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 450 nm. All tests were done in triplicate on three separate circumstances. One-way ANOVA and Tukey’s test were applied for the statistical analysis. A significant decrease of S. mutans biofilm mass was noticed in 0.5% vanillin incorporated resin group compared with a control, resin without vanillin. The percentage of biofilm reduction was 40.8%. No different effect was observed in 0.1% vanillin group. In the case of C. glabrata, no significant biofilm reduction was examined among all groups. In conclusion, the adding of 0.5% vanillin to surgical obturator resin could significantly inhibit biofilm formation of S. mutans, however, the effect was not demonstrated on 0.1% vanillin. C. glabrata was observed to be resistant to vanillin. Using PMMA resin incorporated with 0.5% vanillin, an obturator with antimicrobial property can be applied to prevent dental caries and other systemic diseases in patients after surgical treatment.


2020 ◽  
Vol 853 ◽  
pp. 51-55
Author(s):  
Pakpoom Kedcharoen ◽  
Boonyanit Thaweboon ◽  
Natthamet Wongsirichat ◽  
Sroisiri Thaweboon

Self-cure poly-methyl methacrylate (PMMA) resin has been the material commonly used for fabrication of surgical obturator. The appliance is used in the cancer patient after surgical removal of the affected maxillofacial tissues. However, wearing of this resin appliance can enhance a condition for microbial biofilm aggregation and put patients at increased risk of infection. Vanillin-incorporated heat-cure PMMA resin and self-cure PMMA resin have been developed and demonstrated to have antimicrobial activity. This study aimed to evaluate antimicrobial property of vanillin-incorporated self-cure PMMA obturator resin on the biofilm formation of C. albicans and S. aureus. The resin samples (Orthocryl® EQ, Dentaurum, Germany) were prepared with vanillin incorporation (0.1% and 0.5% vanillin). All samples were coated with sterile saliva and incubated at 37 °C for 60 min. The Staphylococcus aureus ATCC 5638 and Candida albicans ATCC 10231 suspensions (107 colony forming unit/mL) were prepared and microbial biofilm formation was done in 96-well plate at 37°C for 24 h. The amount of biofilm was quantified by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 450 nm. All tests were performed in triplicate on three separate occasions. One-way ANOVA and Tukey’s test were used for the statistical analysis. It was found that approximately 52% and 48% biofilm reductions were observed in 0.1% and 0.5% vanillin groups against S.aureus compared with 0% vanillin (control group) whereas 46% and 54% biofilm reductions were seen against C. albicans biofilm. In conclusion, the incorporation of vanillin in surgical obturator PMMA resin was demonstrated to have antimicrobial property against biofilm formation of S. aureus and C. albicans. This can help the patient who wears surgical obturator for the prevention of opportunistic infections.


2015 ◽  
Vol 16 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Roghayeh Ghorbanzadeh ◽  
Babak Pourakbari

ABSTRACT Aim Polymethyl-methacrylate (PMMA) is commonly used primarily for baseplates of orthodontic appliances (BOA). The activities of cariogenic bacteria in biofilm on these surfaces may contribute to dental caries, gingival inflammation and periodontal disease. The PMMA incorporated with nanoparticles of silver (NanoAg-I-PMMA) and NanoAg in situ in PMMA (NanoAg-IS-PMMA) have been shown to control the growth of cariogenic bacteria, but clinical trial of anti-cariogenic application of these novel materials in orthodontics has not been evaluated. The main aim of the study is to compare the clinical effectiveness of using NanoAg-IS-PMMA and NanoAg-I-PMMA for construction of new BOA in inhibiting the planktonic growth and biofilm formation of the cariogenic bacteria. Materials and methods Twenty four patients with a median age of 12.6 years (7-15) harboring Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus as well as Lactobacillus casei participated in the randomized, doubleblind, cross-over study. The experimental BOA, NanoAg-ISBOA and NanoAg-I-BOA, contained 0.5% w/w NanoAg while the control BOA was standard PMMA. Antibacterial effect of NanoAg-IS-BOA and NanoAg-I-BOA was assessed against test cariogenic bacteria by planktonic and biofilm bacterial cells growth inhibition. Results The average levels of test cariogenic bacteria in saliva decreased about 2 to 70 fold (30.9-98.4%) compared to baseline depending on the microorganism type and test BOA. Biofilm inhibition analysis demonstrated that NanoAg-I-BOA and NanoAg-IS-BOA inhibited the biofilm of all test bacteria by 20.1 to 79.9% compared to BOA. NanoAg-IS-BOA had a strong anti-biofilm effect against S. mutans, S. sobrinus and L. casei. However, NanoAg-I-BOA showed only slight antibiofilm effects on test bacteria. Most notably, at all period of the clinical trial, NanoAg-IS-BOA showed a higher antibacterial activity than NanoAg-I-BOA. Conclusion Based on the novel data that presented here, the NanoAg-IS-BOA had strong antimicrobial activity in the planktonic phase and subsequent biofilm formation of the cariogenic bacteria. Clinical significance Wearing of NanoAg-IS-BOA has the potential to minimize dental plaque formation and caries during orthodontic treatment. How to cite this article Ghorbanzadeh R, Pourakbari B, Bahador A. Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Double-blind Cross-over Clinical Trial. J Contemp Dent Pract 2015;16(4):291-298.


2019 ◽  
Vol 801 ◽  
pp. 3-8 ◽  
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon ◽  
Futoshi Nakazawa

The adherence of microorganisms to denture base materials and the consequent formation of biofilms on these surfaces are contributing factors to biofilm-related oral and systemic diseases. Aspiration pneumonia is a potentially life-threatening respiratory infection associated with the entry of foreign materials into the bronchi. Vanillin-incorporated polymethyl methacrylate (PMMA) resin has been developed for the use in dentistry and demonstrated to have antimicrobial activity. Objective: To evaluate antimicrobial property of vanillin-incorporated PMMA denture base resin on biofilm formation of respiratory pathogens. Materials and methods: The heat polymerized PMMA denture base resin samples (Siam Cement Group, Thailand) were prepared according to the percentage of vanillin incorporation (0%, 0.1% and 0.5% vanillin). Another group of commercial resin samples without vanillin (Triplex®, Ivoclar Vivadent, USA) was prepared in the same manner. All samples were coated with sterile unstimulated saliva collected from three healthy adult volunteers at 37 °C for 60 min. The respiratory pathogenic bacteria used in this study were Staphylococcus aureus ATCC 5638, Streptococcus pneumoniae ATCC 49619, and Pseudomonas aeruginosa ATCC 27853. They were prepared to a concentration of approximately 107 colony forming unit (CFU)/mL. The bacterial biofilm formation was done in 96-well plate and incubated at 37°C for 24-48 h. The amount of biofilm was quantified by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 420 nm. All tests were performed in triplicate on three separate occasions. One-way ANOVA and Turkey’s test were used for the statistical analysis. Results: The vanillin-incorporated resin groups (0.1% and 0.5% vanillin) had a significant reduction of S. aureus and P. aeruginosa biofilm mass compared with resins without vanillin (0% vanillin and commercial resin groups). No significant difference was observed in the S. pneumonia biofilm formation. Up to 80% and 33% reductions of biofilm mass were demonstrated on P. aeruginosa and S. aureus, respectively. Conclusion: The incorporation of vanillin to denture base PMMA resin could significantly inhibit biofilm formation of respiratory pathogens. Using this PMMA resin, denture base materials with antimicrobial property can be applied to reduce a risk of respiratory infection in denture wearing patients.


2018 ◽  
Vol 773 ◽  
pp. 323-327
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Streptococcus mutans has been reported to be a major causative microorganism for oral biofilm associated with dental caries. Jasmine sambac or Arabian jasmine is a species of jasmine native to tropical and warm temperate regions particularly West and Southeast Asia. The antimicrobial activities of essential oil extracted from the flowers of J. sambac have been shown to attract researchers. Objective: To determine the anti-biofilm formation of S. mutans by mouthwash containing jasmine oil. Materials and Methods: S. mutans KPSK2, the cariogenic strain of oral streptococci was used in the study. The 24-h biofilms of S. mutans were formed on polystyrene plates treated with jasmine mouthwash. The 0.2% chlorhexidine gluconate and phosphate buffer saline mouthwash were used as a positive and negative control respectively. The amount of biofilm was quantified by crystal violet staining and spectrophotometry at an optical density of 595 nm. Results: Jasmine mouthwash showed a significant inhibitory effect on S. mutans biofilm formation by decreasing 43% of biofilm whereas that of chlorhexidine showed 71% reduction. Conclusion: The anti-biofilm formation property of jasmine mouthwash was elucidated; therefore it might be another drug of choice that can be used as an adjunct to control the oral health in the prevention of dental caries.


2009 ◽  
Vol 79 (4) ◽  
pp. 766-772 ◽  
Author(s):  
Alev Aksoy Dogan ◽  
Emel Sesli Cetin ◽  
Emad Hüssein ◽  
Ali Kudret Adiloglu

Abstract Objective: To determine the absolute and relative antibacterial activity of octenidine dihydrochloride (OCT) against total and cariogenic bacteria in saliva samples of patients with fixed orthodontic appliances during 5 days of usage. Materials and Methods: The study group consisted of 5 male and 13 female subjects who were selected from patients in the Clinic of Orthodontics. Each patient was given physiologic saline (PS), chlorhexidine gluconate (CHX), polyvinylpyrrolidone-iodine complex (PVP-I), and OCT every morning for 5 days, each separated by a 2-week interval. Total and cariogenic bacteria in saliva samples of orthodontically treated patients with fixed appliances were collected during 5 days of usage. Unstimulated saliva was collected as a baseline sample. Saliva samples were collected at 15 minutes, and on the second, third, and fifth day after rinsing the mouth with any of the solutions for 30 seconds, and bacterial counts were detected. Results: OCT showed an ultimate reduction of total viable oral bacteria, Lactobacillus species, and Streptococcus mutans in vivo. OCT also had a significantly greater inhibitory effect than 0.2% CHX and 7.5% PVP-I, from the beginning of the study until the fifth day after the orthodontic appliances were bonded (P < .1). Conclusions: OCT compared favorably with respect to CHX and PVP-I complex in orthodontically treated patients with fixed appliances (P ≤ .1).


2018 ◽  
Author(s):  
Yesol Yoo ◽  
Dong-Ho Seo ◽  
Hyunjin Lee ◽  
Young-Do Nam ◽  
Myung-Ji Seo

ABSTRACTStreptococcus mutansplays a key role in the development of dental caries and promotes the formation of oral biofilm produced by glucosyltransferases (GTFs).Bacillus velezensisK68 was isolated from traditional fermented foods and inhibits biofilm formation mediated byS. mutans. Gene amplification results demonstrated thatB. velezensisK68 contained genes for the biosynthesis of 1-deoxynojirimycin (1-DNJ), a known GTF expression inhibitor. The presence of the GabT1, Yktc1, and GutB1 genes required for 1-DNJ synthesis inB. velezensisK68 was confirmed. Supernatant fromB. velezensisK68 culture medium inhibited biofilm formation by 84% whenS. mutanswas cultured for 48 h, and inhibited it maximally when 1% glucose was added to theS. mutansculture medium as a GTF substrate. In addition, supernatant fromB. velezensisK68 medium containing 3 ppb 1- DNJ decreasedS. mutanscell surface hydrophobicity by 79.0 ± 0.8% compared with that of untreated control. The supernatant containing 1-DNJ decreasedS. mutansadherence by 99.97% and 98.83% under sugar-dependent and sugar-independent conditions, respectively.S. mutanstreated with the supernatant exhibited significantly reduced expression of the essential GTF genesgtfB,gtfC,andgtfDcompared to that in the untreated group. Thus,B. velezensisinhibits the biofilm formation, adhesion, and GTF gene expression ofS. mutansthrough 1- DNJ production.IMPORTANCEDental caries is among the most common infectious diseases worldwide, and its development is closely associated with physiological factors of bacteria, such as the biofilm formation and glucosyltransferase production ofStreptococcus mutans.Biofilms are difficult to remove once they have formed due to the exopolysaccharide matrix produced by the microorganisms residing in them; thus, inhibiting biofilm formation is a current focal point of research into prevention of dental caries. This study describes the inhibitory properties ofBacillus velezensisK68, an organism isolated from traditional Korean fermented foods, against biofilm formation byS. mutans. Herein, we show thatB. velezensisinhibits the biofilm formation, adherence to surfaces, and glucosyltransferase production ofS. mutans.


e-GIGI ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Helen N. Sekeon ◽  
Heriyannis Homenta ◽  
Michael A. Leman

Abstract: Streptococcus mutans is the most common bacterium that causes dental caries due to its ability to ferment carbohydrates into acid resulting in the decreased pH on the tooth surface. Prevention of dental caries could be achieved by inhibiting the growth of cariogenic bacteria. Various efforts to control and prevent the cariogenic bacteria include the usage of herbal ingredients; one of them is gedi leaves (Abelmoschus manihot L.). These gedi leaves contain bioactive compounds such as flavonoids, alkaloids, steroids, and saponins. This study was aimed to prove that gedi leaf extract had inhibitory effect on the growth of S.mutans and to obtain the minimum inhibitory concentration (MIC) of this extract on the growth of S. mutans. This was a true experimental design with a randomized pretest-posttest control group design. Gedi leaf extract was obtained by maceration method in 96% ethanol. The results showed that gedi leaf extract had an antibacterial effect on the growth of S. mutans. We used turbidimetry, UV-Vis spectrophotometer, and two times of treatment to obtain the MIC of gedi leaf extract on Streptococcus mutans which was 6.25%. Conclusion: Gedi leaf extract could inhibit the growth of S. mutans with a MIC of 6.25%.Keywords: dental caries, gedi leaf extract (Abelmoschus manihot L.), Streptococcus mutans Abstrak: Streptococcus mutans merupakan bakteri yang paling banyak menyebabkan karies gigi karena bakteri ini berkemampuan memfermentasi karbohidrat menjadi asam yang berakibat turunnya pH pada permukaan gigi. Pencegahan karies gigi dapat dicapai dengan menghambat pertumbuhan bakteri kariogenik. Berbagai upaya dilakukan untuk mengen-dalikan dan mencegah bakteri kariogenik, antara lain dengan menggunakan bahan herbal; salah satunya yaitu tanaman gedi (Abelmoschus manihot L.). Daun gedi mengandung senyawa bioaktif antara lain flavonoid, alkaloid, steroid, dan saponin. Penelitian ini bertujuan untuk membuktikan efek inhibisi ekstrak daun gedi terhadap pertumbuhan S. mutans dan mendapatkan konsentrasi hambat minimum (KHM) ekstrak daun gedi terhadap pertumbuhan bakteri S. mutans. Jenis penelitian ini ialah eksperimental murni dengan randomized pretest-posttest control group design. Ekstrak daun gedi dibuat dengan metode maserasi dengan menggunakan etanol 96%. Hasil penelitian menunjukkan bahwa ekstrak daun gedi (Abelmoschus manihot L.) memiliki efek antibakteri dalam menghambat pertumbuhan bakteri Streptococcus mutans. Dengan menggunakan metode turbidimetri dan spektrofotometer UV-Vis dalam 2 (dua) kali perlakuan maka diperoleh KHM ekstrak daun gedi (Abelmoschus manihot L.) terhadap bakteri Streptococcus mutans terdapat pada konsentrasi 6,25%. Simpulan: Ekstrak daun gedi dapat meghambat pertumbuhan Streptococcus mutans dengan KHM pada konsentrasi 6,25%.Kata kunci: karies gigi, ekstrak daun gedi (Abelmoschus manihot L.), Streptococcus mutans


Sign in / Sign up

Export Citation Format

Share Document