Experimental Study on Impact Resistance of Concrete Containing Steel Fibers

2021 ◽  
Vol 872 ◽  
pp. 1-6
Author(s):  
Khaleel H. Younis ◽  
Firas F. Jirjees ◽  
Hozan K. Yaba ◽  
Shelan M. Maruf

This study is an experimental study aims to examine the effect of utilization of straight, and low cost steel fibers on the impact resistance of concrete. The impact resistance of steel fiber reinforced concrete (SFRC) was assessed using drop weight test as per ACI committee 544. The steel fibers were randomly dispersed in concrete during mixing. Five mixes made with steel fibers dosages of 0% (control mix), 0.5%, 1%, 1.25% and 1.5% by volume of concrete were examined in the study. The results show that mixes containing steel fibers show better impact resistance than plain concrete (control Mix). The results also indicate that increasing the dosage of fiber increases the impact resistance of concrete but up to a certain content of fibers. The maximum increase was recorded at steel fiber dosage of 1.25% by volume of concrete. Also the patterns of failure of the concrete specimens show that fibers are very effective in increasing the concrete toughness which enhance the ductility of concrete and delays the crack initiation.

2014 ◽  
Vol 584-586 ◽  
pp. 1630-1634
Author(s):  
Xin Hua Cai ◽  
Zhen He ◽  
Wen Liu

PVA fiber reinforced cement-based composite is a new high-performance cement-based composite material, which usually manufactured with PVA short fibers (does not exceed 2.5% vol.) and cement-based matrix. It has a significant strain-hardening characteristic and excellent crack controlling ability. Its ultimate tensile strain is up to 3% and crack width is not exceed 100μm. PVA fiber reinforced cement-based composite can be utilized to fabricated high energy absorption opponents, such as protective shield, seismic joint, impact-resistant site, etc. In this paper, the basic mechanical properties of PVA fiber reinforced cement-based composite has been tested and verified first. Then the impact resistance of PVA reinforced cement-based composite has been investigated via drop weight impact test, and compared with ones of plain concrete and steel fiber reinforced concrete with the same strength grade. Through analyzing the test results, it is concluded that PVA reinforced cement-based composite’s impact energy absorption is 48 times than plain concrete, and 9 times than steel fiber reinforced concrete respectively. The impact numbers of PVA reinforced cement-based composite is slightly lower than steel fiber reinforced concrete, but its impact absorption energy after initial cracking is 15 times than steel fiber reinforced concrete. In conclusion, PVA reinforced cement-based composite is an excellent impact material.


2020 ◽  
Vol 10 (16) ◽  
pp. 5562 ◽  
Author(s):  
Yu-Wen Liu ◽  
Yu-Yuan Lin ◽  
Shih-Wei Cho

This study investigated two types of abrasion resistance of steel–fiber-reinforced concrete in hydraulic structures, friction abrasion and impact abrasion using the ASTM C1138 underwater test and the water-borne sand test, respectively. Three water-to-cementitious-material ratios (0.50, 0.36, and 0.28), two impact angles (45° and 90°), plain concrete, and steel–fiber-reinforced concrete were employed. Test results showed that the abrasive action and principal resistance varied between the two test methods. The average impact abrasion rates (IARs) of concrete were approximately 8–17 times greater than the average friction abrasion rate (FARs). In general, the impact abrasion loss of the concrete surface impacted at a vertical angle was higher than that of impacted at a 45 degree angle. Moreover, the average FAR and IAR decreased when the concrete was reinforced with steel fibers. The steel fibers acted as shields to prevent the concrete material behind the fibers from abrasion, thus improving abrasion resistance. In both the underwater and waterborne sand flow methods, the resistance to abrasion of concrete without steel fibers increased as the water/cementitious material ratio (w/cm) decreased, and the concrete compressive strength also increased.


2011 ◽  
Vol 214 ◽  
pp. 144-148 ◽  
Author(s):  
Farnoud Rahimi Mansour ◽  
Sasan Parniani ◽  
Izni Syahrizal Ibrahim

In recent years, considerable interest has developed in using fibers to increase the load-carrying capacity of concrete members. Fibers significantly reduce the brittleness of concrete and improve its engineering properties, such as tensile, flexural, impact resistance, fatigue, load bearing capacity after cracking and toughness. However, studies on the exact amount of influence are very limited. Among fibers, steel fibers are one of the most popular and widely used types of fibers in both research and practice. Steel fiber-reinforced concrete (SFRC) has been used increasingly in recent years and has a lot of applications. Previous researchers have mentioned that using fiber as 0.5 – 2.5 % of the volume of concrete can significantly improve the concrete properties. The purpose of this paper is firstly to investigate the effects of fiber volume on the compressive, splitting, and flexural behaviors of SFRC, and secondly to compare modes of failure. Variable items are the steel fiber volume fraction and the curing day. A series of 108 specimens (cube, cylinder and prism) with four different steel fiber volumes are used by a ratio of 0, 0.7, 1.0 and 1.5%. All specimens are cured in a water tank for 7, 14 and 28 days, respectively to provide same conditions. Hooked-ended steel fibers with a length of 30mm and a diameter of 0.75 mm are used.


2013 ◽  
Vol 357-360 ◽  
pp. 1049-1052 ◽  
Author(s):  
Xian Dong Wang ◽  
Chang Zhang ◽  
Zhen Huang ◽  
Guo Wei Chen

This paper studied experimentally the impact mechanical properties of bamboo fiber and hybrid steel fiber reinforced concrete. Steel fiber is already used in construction widely, but it is expensive in cost. As a kind of green building material, bamboo fiber can be used in the infrastructures together with concrete to improve the concretes mechanical properties. In order to investigate the impact mechanical properties of concrete reinforced with bamboo fiber and steel fiber, a series of concrete specimens reinforced with bamboo fiber, steel fiber or both steel fiber and bamboo fiber are investigated with self-designed impact device. The impact resistance abilities are tested and compared.


2012 ◽  
Vol 430-432 ◽  
pp. 277-280
Author(s):  
Yan Ming Wang ◽  
Wen Wen Yang ◽  
Yong Sun ◽  
Ke Liu

The fiber reinforced concrete with flexible fiber and rigid fiber respectively added into C30 plain concrete, curing under standard condition for 28 days, was used for impact resistance performance experiment. The flexible fiber is American Dura fiber and Chinese nylon fiber. The rigid fiber is Chinese steel fiber. The impact resistance property was evaluated by initial cracking times, final cracking times and impact toughness. The result shows that the impact toughness of steel fiber concrete, Dura fiber concrete and nylon fiber concrete is respectively 15.1, 3.4 and 2.7 times of the plain concrete. The fiber reinforced concrete improves the impact resistance property compared with the plain concrete. The impact resistance of rigid steel fiber reinforced concrete is increased greatly.


Author(s):  
V. A. Dorf ◽  
◽  
R. O. Krasnovskij ◽  
D. E. Kapustin ◽  
P. S. Sultygova ◽  
...  

The paper considers the results of the impact of high temperatures during the fire on changes in the density and elasticity modulus of steel fiber reinforced concrete (SFRC) at different values of density of the cement-sand matrix corresponding to its flexural strength of 5.0 and 8.5 MPa. It is shown that in the temperature range from 20 to 1100 °C, the diagrams «Density of steel fiber reinforced concrete - heating temperature» are linear and their shape does not depend on the type of fiber and its content in steel fiber reinforced concrete. The results of the performed studies allow determining the change in the elastic modulus of the SFRC after heating.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


2012 ◽  
Vol 174-177 ◽  
pp. 668-671
Author(s):  
He Ting Zhou

Steel fiber has a fine nature in reinforcing concrete. This essay aims to find out the influence of physical forms of steel fiber on its nature of reinforcement. By comparing two types of cement mortar reinforced by steel fibers, it is found that spiral steel fibers have a better bond strength with matrix than straight ones. Therefore, a conclusion could be drawn that physical forms of the steel fiber play a significant role in steel fiber reinforced concrete, and the experiment also serves a rewarding reference to the application of spiral steel fibers.


Sign in / Sign up

Export Citation Format

Share Document