The Design of Reactive Powder Concrete (RPC) Mixtures Using Aceh Quartzite Powder

2021 ◽  
Vol 892 ◽  
pp. 43-50
Author(s):  
Yulius Rief Alkhaly ◽  
Abdullah ◽  
Husaini ◽  
Muttaqin Hasan

Original reactive powder concrete (RPC) consists of a large amount of cement, fine sand, crushed quartz, and silica fume, with a very dense matrix achieved by optimizing the granular packaging of the materials. This study, therefore, applied the modified Andreasen & Andersen particle-packing model using Aceh quartzite powder to design a densely compacted matrix and low cement content RPC mixtures. The research involved the preparation of two series of the mixture with different percentages of silica fume and Aceh quartzite powder and the 70.7 mm cube specimens were treated with combined steam curing and normal curing after which their compressive strength was tested at the age of 7 days and 28 days. The result showed the use of 61% local quartzite powder by weight of cement through an optimized mix design and cured treatment improves the RPC strength at any variation of silica fume.

2018 ◽  
Vol 917 ◽  
pp. 321-328 ◽  
Author(s):  
Umut Bektimirova ◽  
Aidana Tleuken ◽  
Elnara Satekenova ◽  
Chang Seon Shon ◽  
Di Chuan Zhang ◽  
...  

A new reinforced concrete foundation system is being proposed to store renewable energy through the compressed air energy storage technology. For this application, the concrete is required to resist considerable tensile strength and to have low air permeability, which is not observed in normal concrete. Therefore, this paper is proposing to use reactive powder concrete for the suggested foundation system. Reactive powder concrete (RPC) is obtained by introducing either micro-cementitious materials like silica fume or fine powders like crushed quartz into the concrete mixture from where coarse aggregates had been removed. RPC has low water content and dense particle packing which lead to high strength and low air permeability characteristics. This paper conducts preliminary experimental investigations on the strength and air permeability of the RPC. Two important mix design parameters are studied including water-to-binder ratio ad silica fume content. Preliminary correlations between mix design parameters and strength/air permeability are developed. From the preliminary test results, it is concluded that the reactive powder concrete has potential to meet the high strength and low air permeability requirements, and is suitable for the proposed energy storage foundation system.


2021 ◽  
Author(s):  
Oorkalan A ◽  
Chithra S

Abstract The present study investigates the properties of RPC developed using low cost eco-friendly materials such as pyrogenic silica (PS) and coir pith (CP) fine aggregates. This study investigates the effects of PS as silica fume replacement which is the main constituent for the production of reactive powder concrete which contained coir pith as a fine aggregate replacement instead of quartz sand up to 25%. The use of silica fume increases the particle packing density of RPC but increases the shrinkage phenomenon in RPC due to the minimum w/b ratio adopted. Therefore, in this research PS is used as a partial substitute for SF up to 30% and its effect on the mechanical and durability properties of coir pith containing RPC is studied. The test results showed that the mechanical strength values decreased with an increase in the addition of CP aggregate beyond 5% whereas the decrement in compressive strength was partially reduced when PS is used as silica fume replacement up to a maximum of 30%. The chloride penetration resistance was also improved with increasing PS substitution in RPC containing CP aggregates. The autogenous shrinkage and drying shrinkage were also significantly reduced due to the internal curing ability of the CP aggregates in combination with PS. The development of dense CSH gels from hydration is also evident from low CaO/ SiO2 ratio obtained from the EDS analysis. Hence the combination of PS with CP aggregates can reduce the shrinkage characteristics of RPC thereby providing eco-friendly sustainable concrete at low cost.


2018 ◽  
Vol 9 (4) ◽  
pp. 114 ◽  
Author(s):  
Mohamed Amin

Reactive Powder Concrete (RPC) is composed of very fine powders (cement, sand, and pozzolanic materials), and superplasticizers. A very dense matrix is found, and this tightness provides RPC with ultra-high strength and durability. Recently, using supplementary cementing materials associates greatly with ultra-high strength and the mix design of ultra-high performance concrete (UHPC). These materials could be natural, by-products or industrial wastes. They could be also less energy consuming and little time produced materials. Silica fume (SF), rice husk ash (RHA) and granulated blast furnace slag (GBFS) etc. are among the major supplementary cementing materials utilized. The detailed experimental investigation done to study the impact of partial alteration of cement with SF, RHA, and GBFS on concrete properties. This study aims to a minor replacement of Portland cement by SF, RHA and GBFS to reach UHPC. Twenty-five different concrete mixes (fc =150.1 to 188.2 MPa) with and without SF, RHA and GBFS were prepared with local materials in Egypt. Concrete mixes were cast with 0, 10, 15, 20, and 25% cement replaced by either SF or RHA, and another proportions taken combination between SF and RHA or SF and GBFS or RHA and GBFS about percentages from 10 to 15%. The mixes were tested for slump flow, air content, mechanical properties and water permeability. The findings of hardened properties indicate that optimum level for partial changing of cement by SF and RHA was 20% and it is observed that though the strengths of SF or RHA concrete goes on decreasing after the 20% addition of SF or RHA. Test results have indicated that RHA exhibits lower pozzolanic activity than SF.


2012 ◽  
Vol 174-177 ◽  
pp. 1090-1095 ◽  
Author(s):  
Kai Pei Tian ◽  
Yang Ju ◽  
Hong Bin Liu ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The explosive spalling of high-strength concrete due to fire is a problem that has garnered increasingly widespread attention, particularly the explosive spalling of reactive powder concrete (RPC). For years, based on the vapor pressure mechanism, the addition of fibers has been demonstrated to be somewhat effective in protecting against spalling. However, relevant experiments indicate that fibers are not effective for dense concrete, which is a challenge for the simple vapor pressure mechanism in providing spalling resistance for RPC. The authors found that silica fume plays an important role in the explosive spalling of RPC. Thus, four classes of RPCs with different ratios of silica fume were prepared, and the spalling phenomena and the inner temperature distribution during heating were investigated. The results show that silica fume content has a prominent effect on the spalling process of RPC.


2018 ◽  
Vol 162 ◽  
pp. 02014
Author(s):  
Mazin Abdulrahman ◽  
Alyaa Al-Attar ◽  
Marwa Ahmad

Reactive Powder Concrete (RPC) is an ultra-high performance concrete which has superior mechanical and physical properties, and composed of cement and very fine powders such as quartz sand and silica fume with very low water/ binder ratio and Superplasticizer. Heat treatment is a well-known method that can further improve the performance of (RPC). The current research including an experimental study of the effect of different curing conditions on mechanical properties of reactive powder concrete (compressive strength, modulus of rupture and splitting tensile strength), the curing conditions includes three type of curing; immersion in water at temperature of 35 OC (which is considered as the reference-curing situation), immersion in water at temperature of 90 OC for 5 hours daily and curing with hot steam for 5 hours daily) until 28 days according to ASTM C684-99 [8]. This research includes also the study of effect of adding silica fume as percentage of cement weight on mechanical properties of reactive powder concrete for different percentage ratios (5%,10% and 15%). Super plasticizer is also used with ratio of (1.8%) by weight of cementitious material; constant water cement ratio (0.24) was used for all mixes. For each reactive concrete mix, it has been cast into a cubes of (150*150*150) (to conduct the compression test), a cylinders of 150mm diameter with 300mm height (to conduct split test) and prisms of (500*100*100)mm to conduct the modulus of rupture test. The results showed that the best method of curing (according to its enhancing the RPC mechanical properties) is the method of immersion in hot water at temperature 90 OC for the all silica fume percentages, and the best used silica fume percentage was (10%) for the all used curing methods.


2019 ◽  
Vol 4 (6) ◽  
pp. 74-83 ◽  
Author(s):  
Gamal I. K. ◽  
K. M. Elsayed ◽  
Mohamed Hussein Makhlouf ◽  
M. Alaa

Reactive Powder Concrete RPC is comprise of (cement, quartz powder, sand, and superplasticizer) mixture with low water/cement ratio. It has not coarse aggregates and characterized by highly dense matrix, high strength concrete, excellent durability, and economic. This study aims to investigate fresh and hardened properties of locally cast RPC with several available economical materials such as silica fume (SF), fly ash (FA), steel fiber (STF), and glass fiber (GF). Experimental investigation were performed to study the effectiveness of partial replacement of cement by SF or FA to reach ultra-high strength concrete, effect of additional materials STF or GF in order to improve the fracture properties of the RPC mixes, and influence of the treated with normal water as well as with hot water. Fifteen different RPC mixes were cast with 20, 25, 30, and 35% cement replacement by SF, 25% cement replacement by FA, and another proportions taken combination between SF and FA with percentages 15, 20, 25% FA and constant 10% SF. Varying fiber types (steel fiber or glass fiber) added to concrete by different percentages 1, 2, and 3%. Specimens were treated with normal water 25ᵒC and hot water at 60ᵒC and 90ᵒC by 2 mixes with silica fume content 25% of binder and steel fiber content 2% by total volume. Performance of the various mixes is tested by the slump flow, compressive strength, flexure strength, splitting tensile strength, and density. The production of RPC using local materials is successfully get compressive strength of 121 MPa at the age of 28 days at standard conditions and normal water curing 25°C with Silica fume content 25% of binder and steel fiber content 2% by total volume of RPC and water/binder ratio of 0.25.  The results also showed the effect of curing by hot water 60 and 90°C, it is observed that compressive strength increases proportionally with curing temperatures and a compressive strength of 149.1 MPa at 90°C for 1days was obtained.


Author(s):  
Farid Ghaffari Moghaddam ◽  
Abbas Akbarpour ◽  
Afshin Firouzi

Abstract Suitable distribution of particles and the presence of hydration lead to the improved compressive performance and optimum (even reduced) cost in the production of reactive powder concrete (RPC). This study was conducted to obtain a better understanding of RPC and analyze the behavior of modified RPC (MRPC) using the properties of surface resistivity, water penetration, compressive strength, and modulus of elasticity, apart from the cost. The present study was carried out to investigate how to optimize the size and diversity of the aggregate in order to increase the applications and reduce the costs. The options were selected from among the 12 alternatives classified during the construction stages. According to the six weighting parameters used for comparing with the sample, the derived framework can be described as a mixing design for RPC. Five weighting criteria were considered with values of one of the five criteria missing, and in one case, all criteria were taken with equal weights. For the final analysis, the Expert Choice software was used to create a framework for the optimal mix design of RPC and MRPC. The MRPC mixing designs showed good results, with very slight differences compared to RPC. In many cases, MRPC can be used instead of RPC.


2014 ◽  
Vol 597 ◽  
pp. 320-323 ◽  
Author(s):  
De Hong Wang ◽  
Yan Zhong Ju ◽  
Wen Zhong Zheng

Mechanical properties of reactive powder concrete (RPC) containing fly ash were investigated under different curing regimes (standard and steam curing) in this study. The experimental results indicate that, flexural strength of RPC increased considerably after steam curing, compared to the standard curing. Steam curing had no significant effect on compressive strength of RPC. Increasing the fly ash content improved the flexural strength of RPC under all curing regimes considerably. The compressive strength reached a maximum (103.8MPa) when the fly to ash and cement ratio is 0.3.


Sign in / Sign up

Export Citation Format

Share Document