A Comparison of Active Near-Interface Traps in Nitrided and As-Grown Gate Oxides by the Direct Measurement Technique

2020 ◽  
Vol 1004 ◽  
pp. 635-641
Author(s):  
Peyush Pande ◽  
Sima Dimitrijev ◽  
Daniel Haasmann ◽  
Hamid Amini Moghadam ◽  
Philip Tanner ◽  
...  

This paper presents a comparative analysis of the electrically active near-interface traps, energetically located above the bottom of conduction band. Two different samples of N-type SiC MOS capacitors were fabricated with gate oxides grown in (1) dry O2 (as-grown) and (2) dry O2 annealed in nitric oxide (nitride). Measurements performed by the direct measurement method revealed that the traps located further away from the SiO2/SiC interface are removed by nitridation. A spatially localized behaviour of NITs is observed only in the nitrided gate oxide but not in the as-grown gate oxide.

2019 ◽  
Vol 963 ◽  
pp. 236-239 ◽  
Author(s):  
Peyush Pande ◽  
Sima Dimitrijev ◽  
Daniel Haasmann ◽  
Hamid Amini Moghadam ◽  
Philip Tanner ◽  
...  

In this paper we report temperature independent near-interface traps (NITs) in the gate oxide of N-type MOS capacitors. The measurements were performed by a recently developed direct-measurement technique, which detected NITs with energy levels between 0.13 eV to 0.23 eV above the bottom of conduction band. These traps are also spatially localized close to the SiC surface, as evidenced by the fact that they are not observed at measurement frequencies below 6 MHz. The temperature independence indicates that this localized defect is different from the usually observed NITs whose density is increased by temperature-bias stress.


1998 ◽  
Vol 525 ◽  
Author(s):  
J. Kuehne ◽  
S. Hattangady ◽  
J. Piccirillo ◽  
G. C. Xing ◽  
G. Miner ◽  
...  

ABSTRACTIn order to prevent boron penetration in PMOS transistors without degrading channel mobility, it is necessary to engineer the distribution of nitrogen introduced into the gate oxide. We have investigated methods of engineering this distribution using nitric oxide (NO) gas in an RTP system to thermally nitride ultra-thin gate oxides. In one approach, the gate oxide is simultaneously grown and nitrided in a mixture of nitric oxide and oxygen. For a 40 Å film, SIMS depth profiling shows that this process moves the nitrogen peak into the bulk of the oxide away from the oxide silicon interface. In another approach, an 11 Å chemical oxide produced by a standard pre-furnace wet clean is nitrided in NO at 800 deg. C. This film is subsequently reoxidized in either oxygen or steam. For an 1100 deg. C., 120 sec RTP reoxidation in oxygen, the final film thickness is 41 Å. The nitrogen has a peak concentration of 5 at. % and the peak is located in the oxide 25 Åfrom the oxide/silicon interface. Ramped voltage breakdown testing was carried out on MOS capacitors built using reoxidized NO nitrided films. They have breakdown characteristics that are equivalent to conventional furnace grown oxides. These films show considerable promise as gate dielectrics for CMOS technologies at geometries of 0.25um and below.


2020 ◽  
Vol 41 (10) ◽  
pp. 1460-1463
Author(s):  
Melissa Arabi ◽  
Xavier Garros ◽  
Jacques Cluzel ◽  
Mustapha Rafik ◽  
Xavier Federspiel ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7698
Author(s):  
Xiaorong Gong ◽  
Shudong Chen ◽  
Shuang Zhang

The Overhauser magnetometer is a scalar quantum magnetometer based on the dynamic nuclear polarization (DNP) effect in the Earth’s magnetic field. Sensitivity is a key technical specification reflecting the ability of instruments to sense small variations of the Earth’s magnetic field and is closely related to the signal-to-noise ratio (SNR) of the free induction decay (FID) signal. In this study, deuterated 15N TEMPONE radical is used in our sensor to obtain high DNP enhancement. The measured SNR of the FID signal is approximately 63/1, and the transverse relaxation time T2 is 2.68 s. The direct measurement method with a single instrument and the synchronous measurement method with two instruments are discussed for sensitivity estimation in time and frequency domains under different electromagnetic interference (EMI) environments and different time periods. For the first time, the correlation coefficient of the magnetic field measured by the two instruments is used to judge the degree of the influence of the environmental noise on the sensitivity estimation. The sensitivity evaluation in the field environment is successfully realized without electrical and magnetic shields. The direct measurement method is susceptible to EMI and cannot work in general electromagnetic environments, except it is sufficiently quiet. The synchronous measurement method has an excellent ability to remove most natural and artificial EMIs and can be used under noisy environments. Direct and synchronous experimental results show that the estimated sensitivity of the JOM-4S magnetometer is approximately 0.01 nT in time domain and approximately 0.01 nT/ in frequency domain at a 3 s cycling time. This study provides a low-cost, simple, and effective sensitivity estimation method, which is especially suitable for developers and users to estimate the performance of the instrument.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000 ◽  
Author(s):  
Junjuan Li ◽  
Baoqi Zuo ◽  
Chen Wang ◽  
Wenxiao Tu

In this paper, a new yarn evenness measurement method based on machine vision is introduced, which is a direct measurement process, as opposed to other methods. Two types of yarns (i.e., same yarn count but different quality grade and same quality grade but different yarn count) are measured to determine the coefficient of variation unevenness, which can be compared with the results of USTER ME100. The yarn images are continuously captured via an image acquisition system. To determine the main body of the yarn accurately, the yarn images are processed sequentially by a threshold segmentation and morphological opening operation. Next, the coefficient of variation (CV value) of the diameter is calculated to characterize the yarn evenness. Different image processing methods are used and compared to obtain a suitable method for use in the experiment. A more accurate, more efficient, and faster measurement system will meet requirements of the manufacturing of yarn; the suitable performance of the proposed method is illustrated using experimental results.


2012 ◽  
Vol 241-244 ◽  
pp. 885-888
Author(s):  
Xiao Chun Zhang ◽  
Xiu Bin Sun ◽  
Xiang Yong Mou

The shunt coefficient of a model of constructions was measured by a pulse current generator, an induction coil, a digital oscilloscope. The experimental results demonstrate that the method is effective, the distribution of pulse current in a buildings can be directly measured without damage.


Author(s):  
Qingyu Wang ◽  
Brian Pettinato ◽  
Eric Maslen

In a rotor-bearing system, there are usually some under- or unmodeled components, such as foundations and seals. Identifying the dynamic characteristics of these components often requires both an analytical model and test data due to the working conditions, such as running speed above the first bending mode and non-collocation measurements. The existing methods always identify the dynamic characteristics by solving the equations of motion at discrete frequencies of the measured frequency response functions (FRFs). They have two problems: first, the physical background of the identification is buried in the equation solving process, and second, there is no quality estimation of the identified result. This paper discusses the first problem which is the equation solving process. The second problem, quality estimation, is discussed in a subsequent paper [1]. This paper reveals that model-based identification is the interconnection of certain transfer functions. These transfer functions are either generated from an analytical model (the common model-based method), or directly measured (direct measurement method). The process of both these methods is then illustrated by use of experimental data. A novel seal test design is proposed based on the idea of the direct measurement method. Identification under complex situations is also considered as complementary to the main content, such as different input/output locations. The conditions for identifiability are given.


2007 ◽  
Vol 2 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Rachel L. Wright ◽  
Dan M. Wood ◽  
David V.B. James

The aims of the study were to investigate whether starting cadence had an effect on 10-s sprint-performance indices in friction-loaded cycle ergometry and to investigate the influence of method of power determination. In a counterbalanced order, 12 men and 12 women performed three 10-s sprints using a stationary (0 rev/min), moderate (60 rev/min), and high (120 rev/min) starting cadence Calculated performance indices were peak power, cadence at peak power, time to peak power, and work to peak power. When the uncorrected method of power determination was applied, there was a main effect for starting cadence in female participants for peak power (stationary 635 ± 183.7 W, moderate 615.4 ± 168.9 W and high 798.4 ± 120.1 W) and cadence at peak power (89.8 ± 2.3 rev/min, 87.9 ± 21.5 rev/min, and 113.1 ± 12.5 rev/min). For both the uncorrected and directly measured methods of power determination in men and women, there was a main effect for starting cadence for time to peak power and work to peak power. In women, for an uncorrected method of power determination, it can be concluded that starting cadence does affect peak power and cadence at peak power. This effect is, however, negated by a direct-measurement method of power determination. In men and women, for both uncorrected and directly measured methods o power determination, time to peak power and work to peak power were affected by starting cadence. Therefore, a higher-cadence start is unsuitable, particularly when sprint-performance indices are determined from an uncorrected method.


1998 ◽  
Author(s):  
Andrzej Walczak ◽  
Edward Nowinowski-Kruszelnicki ◽  
Aleksander Kiezun

Sign in / Sign up

Export Citation Format

Share Document