Evaluation of Stainless Steel as an Electrocatalyst for Electrooxidation of Urea - Rich Wastewater

2020 ◽  
Vol 1008 ◽  
pp. 186-190
Author(s):  
Kholoud Madih ◽  
Ahmed Hassan El-Shazly ◽  
Marwa Farouk El-Kady ◽  
Abdallah Yousef Mohammed Ali ◽  
Hesham Ibrahim Elqady ◽  
...  

In this study, commercially available bare stainless steel 304 was investigated as a working electrode in urea electrooxidation in alkaline solution using different electrochemical techniques like cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrode stability was also investigated by the constant potential electrolysis test. Different concentrations of KOH (0.5-4 M) were employed to study the electrooxidation of urea solution with concentration of 0.33 M. An anodic peak current density of 34.82mA/cm2 was obtained at 473 mV versus Ag/AgCl reference electrode in urea solution at KOH concentration of 4 M. Stainless steel properties such as corrosion resistance, low cost in addition to its catalytic activity make it an ideal anodic electrocatalyst for electrooxidation of urea-rich wastewater.

2017 ◽  
Vol 17 (2) ◽  
pp. 219
Author(s):  
Misriyani Misriyani ◽  
Abdul Wahid Wahab ◽  
Paulina Taba ◽  
Jarnuzi Gunlazuardi

A study on the influence of anodizing time, annealing temperature and photoelectrochemical properties of TiO2 nanotube (TiO2 NT) has been investigated. The crystallinity was investigated using X-Ray Diffraction and the anti-corrosion performance of stainless steel 304 (SS 304) coupled with TiO2 NT was evaluated using electrochemical techniques under ultraviolet exposure. The optimum anodizing condition occurs at a voltage of 20 V for 3 h. After anodizing, the TiO2 NT amorf was calcined at 500 °C to obtain anatase crystalline phase. For the photoelectrochemical property, the effects of pH and NaCl concentration on corrosion prevention have been examined. The result showed that the corrosion rate of stainless steel 304 coupled with TiO2 NT can be reduced up to 1.7 times compared to the uncoupled stainless steel 304 (3.05×10-6 to 1.78×10-6 mpy) under ultraviolet exposure by shifted the photopotential to the more negative value (-0.302 V to -0.354 V) at a pH of 8 and 3% NaCl concentration (-0.264 V to -0.291 V). In conclusion, the TiO2 NT films, which was prepared by anodization and followed by annealing can prevent the corrosion of stainless steel 304.


2014 ◽  
Vol 14 (2) ◽  
pp. 109-115
Author(s):  
Riyanto Riyanto ◽  
Ahmad Safarudin

Preparation and application of platinum composite microelectrode (PCM) for the routine analysis of acetaminophen in pharmaceutical products has been carried out. This electrode was prepare by Pt powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in 0.5 cm diameter stainless steel mould and pressed at 10 ton/cm2. The cyclic voltammetry were performed in a three electrodes system using PCM as a working electrode, an Ag/AgCl (saturated KCl) as reference electrode and platinum wire as the counter electrode. Electroanalysis of acetaminophen was performed in 0.1 M H2SO4 as an electrolyte. The result of the study showed that the correlation of determination using PCM electrode for electroanalysis acetaminophen was R2 = 0.999. Precision, recovery, LOD and LOQ of the PCM towards acetaminophen were found to be 1.04%, 100.54%, 19.52 mg/L and 65.08 mg/L, respectively. As a conclusion, the methods can be used for routine analysis of acetaminophen in pharmaceutical product. Simplicity of sample preparation and use of low cost reagents are the additional benefit of this method.


2020 ◽  
Vol 16 (3) ◽  
pp. 312-318
Author(s):  
Abdulaziz N. Amro

Background: Itopride used for the gastrointestinal symptoms caused by reduced gastrointestinal mobility. For the first time rapid, low cost and green voltammetric method has been applied to analyze itopride in pharmaceutical formulation. Method: Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), Square Wave Voltammetry (SWV) and Differential Pulse Voltammetry (DPV) methods have been applied in this study. Results: Na2SO4 (1M) supporting electrolyte exhibited sharper anodic peak current than other used supporting electrolytes; glassy carbon electrode (GC) working electrode shows better results than platinum electrode (Pt). SWV results show the lowest limit of detection and quantitation values of 2.3 and 18.1 μg.mL-1, respectively. SWV recovery is 100.56% and 100.46% for 50 μg.mL-1 and 100 μg.mL-1 of commercially available itopride tablets, respectively. Furthermore, SWV inter and intraday results precessions are better than other used methods with 0.96 and 0.56% RSD, respectively. Conclusion: The optimum method of applied methods in this study is SWV method. Voltammetry showed low LOD and LOQ values with high accuracy and precession in addition to comparable repeatability and reproducibility values.


Alloy Digest ◽  
2001 ◽  
Vol 50 (1) ◽  

Abstract UNS S41003 is a low-cost utilitarian martensitic stainless steel to be used for highway and other applications. It is used in the tempered condition at several strength levels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear and bend strength It also includes information on forming, heat treating, and joining. Filing Code: SS-815. Producer or source: Bethlehem Lukens Plate.


Alloy Digest ◽  
2020 ◽  
Vol 69 (12) ◽  

Abstract Outokumpu Moda 410L/4003 is a weldable, extra low carbon, Cr-Ni, ferritic stainless steel that is best suited for mildly corrosive environments such as indoors, where the material is either not exposed to contact with water or gets regularly wiped dry, or outdoors, where some discoloration and superficial rusting are acceptable. It is a low-cost alternative to low-carbon non-alloy steels in certain applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1330. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
1997 ◽  
Vol 46 (5) ◽  

Abstract Duracorr is low-cost, utilitarian 11% Cr stainless steel with more corrosion resistance and life-cycle cost advantages than weathering steels. The steel may be used where a combination of abrasion and corrosion resistance is required. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as joining. Filing Code: SS-680. Producer or source: Lukens Steel Company.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Saravanan S ◽  
Murugan G

This study addresses the effect of process parameters viz., loading ratio (mass of explosive/mass of flyer plate) and preset angle on dynamic bend angle, collision velocity and flyer plate velocity in dissimilar explosive cladding. In addition, the variation in interfacial microstructure and mechanical strength of aluminium 5052-stainless steel 304 explosive clads is reported. The interface exhibits a characteristic undulating interface with a continuous molten layer formation. The interfacial amplitude increases with the loading ratio and preset angle. Maximum hardness is observed at regions closer to the interface


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Sign in / Sign up

Export Citation Format

Share Document