Investigation on Thermal Stability of Geopolymer Based Zeolite in Fire Case Study

2020 ◽  
Vol 1009 ◽  
pp. 31-36
Author(s):  
Kanokwan Kanyalert ◽  
Prinya Chindaprasirt ◽  
Duangkanok Tanangteerapong

This work aims to reveal the effects of zeolite on properties of fly ash based geopolymer under high temperature at 300 °C, 600 °C and 900 °C. The specimens were prepared by alkali activation of fly ash, which was partially replaced by two different types of zeolite at 10%, 20% and 30% by weight. The specimens were analyzed for the maximum compressive strength, weight loss percentage, XRD and SEM. The results highlighted that the percentage of weight loss increased with the ratio of zeolite replacement. The compressive strength of geopolymer with synthetic zeolite and natural zeolite at 7, 28, 60 days were similar. The high-temperature exposure resulted in the reduction in compressive strength in all proportions. At the same temperature, compressive strength of all specimens were not significantly different.

2012 ◽  
Vol 578 ◽  
pp. 154-157
Author(s):  
Hong Zhu Quan

This paper presents the results of experiment conducted to evaluate the effects of sustained elevated temperature on concrete. In this experiment, concrete with 4 types of cement, low-heat portland cement, blast-furnace slag cement and fly-ash cement were tested for strength without seal after sustained temperature exposure in the range of 20 to 300°C. Compressive strengths did not decline linearly with temperature and were minimal at around 50°C, showing 20% reduction, which associated with inter-mediate weight loss of 3%. Reductions in tensile strength and modulus of elasticity were greater than compressive strength.


2008 ◽  
Vol 368-372 ◽  
pp. 1529-1531
Author(s):  
Yi Hai Jia ◽  
Min Fang Han ◽  
Ze Sheng Xu ◽  
Yan Gao ◽  
Xian Xian Meng

With fly ash, metakaolin, slag and alkaline activator as raw materials, the geopolymeric ceramic was synthesized and the properties, such as the weight loss, compressive strength and the structures, at high temperatures of 400~1200°C were measured. The weight loss is in the range of 8~13% from 400°C to 800°C. Comparing with the strength at room temperature, the compressive strength of samples is mostly increased at 400°C and all of them increased at 800°C. 9.65~28.32% strength declines at 1200°C. The variation of the compressive strength with temperature is explained based on the analyses of the phases constitutes and the thermal properties of samples.


2012 ◽  
Vol 578 ◽  
pp. 150-153
Author(s):  
Hong Zhu Quan

The effects of sustained high temperature on concrete properties are discussed in this paper. In this experiment, concrete with 6 types of cement were tested after high temperature exposure. Although, test procedures were the same as past literature, test results showed different tendency. The temperature of 50°C at which compressive strength was minimal were found for concrete with high-early strength and medium-heat portland cement, which concrete with other cements showed no change up to 110°C. Relationship between weight loss and compressive strength differed from past literature.


2019 ◽  
Vol 2 (2) ◽  
pp. 126-136
Author(s):  
M.I Retno Susilorini ◽  
Budi Eko Afrianto ◽  
Ary Suryo Wibowo

Concrete building safety of fire is better than other building materials such as wood, plastic, and steel,because it is incombustible and emitting no toxic fumes during high temperature exposure. However,the deterioration of concrete because of high temperature exposure will reduce the concrete strength.Mechanical properties such as compressive strength and modulus of elasticity are absolutely corruptedduring and after the heating process. This paper aims to investigate mechanical properties of concrete(especially compressive strength and modulus of elasticity) with various water-cement ratio afterconcrete suffered by high temperature exposure of 500oC.This research conducted experimental method and analytical method. The experimental methodproduced concrete specimens with specifications: (1) specimen’s dimension is 150 mm x 300 mmconcrete cylinder; (2) compressive strength design, f’c = 22.5 MPa; (3) water-cement ratio variation =0.4, 0.5, and 0.6. All specimens are cured in water for 28 days. Some specimens were heated for 1hour with high temperature of 500oC in huge furnace, and the others that become specimen-controlwere unheated. All specimens, heated and unheated, were evaluated by compressive test.Experimental data was analyzed to get compressive strength and modulus of elasticity values. Theanalytical method aims to calculate modulus of elasticity of concrete from some codes and to verifythe experimental results. The modulus elasticity of concrete is calculated by 3 expressions: (1) SNI03-2847-1992 (which is the same as ACI 318-99 section 8.5.1), (2) ACI 318-95 section 8.5.1, and (3)CEB-FIP Model Code 1990 Section 2.1.4.2.The experimental and analytical results found that: (1) The unheated specimens with water-cementratio of 0.4 have the greatest value of compressive strength, while the unheated specimens with watercementratio of 0.5 gets the greatest value of modulus of elasticity. The greatest value of compressivestrength of heated specimens provided by specimens with water-cement ratio of 0.5, while the heatedspecimens with water-cement ratio of 0.4 gets the greatest value of modulus of elasticity, (2) Allheated specimens lose their strength at high temperature of 500oC, (3) The analytical result shows thatmodulus of elasticity calculated by expression III has greater values compares to expression I and II,but there is only little difference value among those expressions, and (4)The variation of water-cementratio of 0.5 becomes the optimum value.


2013 ◽  
Vol 275-277 ◽  
pp. 2107-2111
Author(s):  
Qiu Lin Zou ◽  
Jun Li ◽  
Zhen Yu Lai

Barite concrete with density grade of 3 and strength grade of C30 was prepared by mixing with different fineness of fly ash. The workability, mechanical properties and long-term high temperature performance of the prepared barite concrete were researched. Results show that the workability of barite concrete is improved by mixing with fly ash, and no segregation of mixture has been observed. The apparent density and 3d, 28d compressive strength of barite concrete are decreased obviously after mixing with fly ash. But with the increasing of the fineness of fly ash, the apparent density and 3d, 28d compressive strength of barite concrete have a slight increase. High temperature residual compressive strength is decreased with the increasing of temperature. The cycle times of heat treatment at 400°C only has a little effect on residual compressive strength of barite concrete.


2012 ◽  
Vol 626 ◽  
pp. 958-962 ◽  
Author(s):  
Yahya Zarina ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Rafiza Abd Razak

The application of geopolymer has been expand in many areas where before this it only used for the production of cement and concrete. One of the new applications of geopolymer is for coating. Metakaolin, fly ash and granulated blast furnace slag has been used as source for the production of geopolymer coating. The result for the geopolymer coating showed that it can prevent corrosion in seawater structure, high bonding strength between existing structures (OPC concrete), lower water permeability and also stable during high temperature exposure.


2019 ◽  
Vol 70 (11) ◽  
pp. 4021-4028 ◽  
Author(s):  
Liew Yun Ming ◽  
Andrei Victor Sandu ◽  
Heah Cheng Yong ◽  
Yuyun Tajunnisa ◽  
Siti Fatimah Azzahran ◽  
...  

This paper investigates the effect of incorporation of lightweight aggregate and foam in the preparation of lightweight aggregate geopolymer concrete (LWAGC) and lightweight aggregate foamed geopolymer concrete (LWAFGC). The geopolymer paste was formed by alkali activation of Class F fly ash in mixture of sodium silicate and sodium hydroxide solution. LWAGC was incorporated with expanded clay lightweight aggregate and river sand while hydrogen peroxide was added as foaming agent for LWAFGC. Results showed that LWAGC and LWAFGC achieved an excellent 28-day compressive strength of 60 MPa and 20 MPa, respectively. The bulk densities were 1815 kg/m3 for LWAGC and 1593 kg/m3 for LWAFGC. Even so, low thermal conductivity of 0.12 W/mK and 0.09 W/mK were reported. It was concluded that the joint effect of lightweight aggregate and foam produced geopolymer concrete with good mechanical strength while having excellent thermal insulating properties. The geopolymer concretes possessed high strength-to-density ratio to be regarded as lightweight high-performance structures.


Sign in / Sign up

Export Citation Format

Share Document