Influence of the Microstructure of Cutting Ceramics on the Efficiency of the Machining Process

2021 ◽  
Vol 1040 ◽  
pp. 21-27
Author(s):  
Aleksei D. Khalimonenko ◽  
E.G. Zlotnikov ◽  
Ilya V. Gorshkov ◽  
M.A. Popov

The article deals with the determination of the efficiency of a multi-bladed tool equipped with inserts made of oxide-carbide cutting ceramics, depending on the microstructural parameters of the tool material. The microstructural parameters of the oxide-carbide cutting ceramic, which affect the performance of the tool, are proposed to be determined according to the electrical resistance of the tool material. In order to implement the method for determining the working capacity of the instrument, a basic design of the device for measuring the electrical resistance of the material of the instrument is proposed. The device for measuring the electrical resistance of ceramic plates consists of a body made of a dielectric material, with channels for supplying a conductive material and a groove for installing a case with a test sample. During the test, the channels are filled with a liquid conductive material, which fills the cavity formed by the channel of the case, the groove of the case and the plate itself under test. To ensure uniform filling of the cavity, after the introduction of the liquid conductive material, metal balls are installed into the channels, which are made in such a size as to ensure free sliding along the channel, but not to let the liquid pass into the upper part of the channel. The tested ceramic plate is installed in the walls of the removable case. The walls of the removable case include electrodes, which, when the device is in operation, are inserted into a cavity with a liquid conductive material at one end, and are connected to an ohmmeter at the other. Using a device for measuring the electrical resistance of ceramic plates, it is possible to determine the operability of the tool and guarantee its operation without rejection for a certain period of time, which was confirmed by experimental research in the milling of workpieces of machine parts made of gray cast iron. Experimental studies in multi-edge machining with cutters with different values ​​of electrical resistance of ceramic plates made it possible to plot graphs of the dependence of the quality of machining during milling on the operability of the tool and on the time of the machining process.

2017 ◽  
Vol 736 ◽  
pp. 86-90 ◽  
Author(s):  
Vyacheslav Maksarov ◽  
A. Khalimonenko

The article considers the problems of forecasting the performance of cutting tools equipped with replaceable ceramic cutting bits. It is proposed to forecast the operability of ceramic tools on the ground of dependence between its performance characteristics and the microstructural parameters of the tool material. It is proposed to determine the parameters of ceramic bits microstructure by a nondestructive testing methods based on measuring the specific electrical resistance of ceramic materials. As a result of the study we have undertaken, a relationship was detected between the performance and specific electrical resistance of ceramic cutting tools.


Author(s):  
Jennifer K. W. Chesnutt ◽  
Bing Guo ◽  
Chang-Yu Wu

Substantial time and money have been directed toward photovoltaic solar power. However, mitigation of dust on solar panels has been largely neglected. The objective of this research was to determine the performance and power consumption of an electrodynamic dust shield (EDS) to clean solar panels as a function of dust particle size. We utilized a discrete element method to computationally simulate the transport, collision, and electrodynamic interactions of particles subjected to electrodynamic waves generated by an EDS. The EDS consisted of electrodes embedded within a dielectric material. 1250 monodisperse particles with diameters of 30–50 μm were simulated. In the absence of particle-particle interactions, an increase in diameter increased particle transport distance due to increased particle charge. However, inclusion of particle-particle collisions produced interactions such that an intermediate diameter yielded the smallest transport distance. Average power required to lift a particle off the surface was smallest with the smallest particle; however, power requirement decreased with diameter with a constant loading of particles on the EDS. Calculated from our simulation data, power consumption per unit area of an experimental EDS agreed with previous experimental studies. Our study elucidated important aspects of EDS operation and power consumption to mitigate dust on solar panels.


2012 ◽  
Vol 217-219 ◽  
pp. 1946-1949
Author(s):  
Shou Ping Qu ◽  
Tian Zhu Liang

In the paper, the new machining process which was named non-abrasive cryogenic polishing will be introduced. The model of non-abrasive cryogenic polishing was set up. The dynamic simulation was analyzed by using Recurdyn. And the physical model was accomplished. By analyzing mass experiments, the ice tool material, metal material, rotate speed, polishing time and other parameters were found.


Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben-Jaber

The development of the manufacturing-based industries is principally due to the improvement of various machining operations. Experimental studies are important in researches, and their results are also considered useful by the manufacturing industries with their aim to increase quality and productivity. Turning is one of the principal machining processes, and it has been studied since the 20th century in order to prevent machining problems. Chatter or self-excited vibrations represent an important problem and generate the most negative effects on the machined workpiece. To study this cutting process problem, various models were developed to predict stable and unstable cutting conditions. Stability analysis using lobes diagrams became useful to classify stable and unstable conditions. The purpose of this study is to analyze a turning process stability using an analytical model, with three degrees of freedoms, supported and validated with experimental tests results during roughing operations conducted on AU4G1 thin-walled tubular workpieces. The effects of the tubular workpiece thickness, the feed rate and the tool rake angle on the machining process stability will be presented. In addition, the effect of an additional structural damping, mounted inside the tubular workpiece, on the machining process stability will be also studied. It is found that the machining stability process is affected by the tubular workpiece thickness, the feed rate and the tool rake angle. The additional structural damping increases the stability of the machining process and reduces considerably the workpiece vibrations amplitudes. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces. The influence of this behavior on the stability of the machining process is assumed to be preponderant.


2013 ◽  
Vol 341-342 ◽  
pp. 3-7
Author(s):  
Hui Ying Feng ◽  
Xiao Jing Li

Super-hard tool material is a main research point of mechanical engineering because of excellent performance. The development of technology for high-speed cutting process could enhance the machining quality and surface precision. It is a difficulty thing to get higher finished surface for traditional machining process. However, the super-hard cutter material could enhance the finished performance of tool material. For example, the wearing resistance, high stability of PCD (polycrystalline diamond) and PCBN (poly cubic boron nitride) can get more information for obtaining higher finished surface quality. The author introduces super-hard cutters materials (PCD and PCBN) development, and discusses several material properties. The features of materials used in different cutting fields are discussed.


2011 ◽  
Vol 418-420 ◽  
pp. 1338-1341
Author(s):  
Qiang Wang ◽  
Ying Ying Zeng ◽  
Xu Guang Min

The response surface model is established through application of surface response method, then the main impact factors of ceramic machining are determined, and the process parameters are optimized. The mechanical machining technology of ceramic materials is analyzed, and the corresponding optimal parameters are proposed by cutting tool material, rake angle, clearance angle and edge angle, and three cutting elements as cutting speed, cutting depth and feed. Accord to the optimal parameters, high efficiency, good quality and low cost results can be achieved to machine ceramic parts.


2018 ◽  
Vol 13 (13) ◽  
pp. 13
Author(s):  
Clauber Roberto Melo Marques ◽  
Paulo Henrique Castagnel

As características superficiais de uma peça usinada são resultantes de vários fatores, entre eles pode-se citar o material da ferramenta utilizada, geração de calor e parâmetros de corte. Este trabalho teve como objetivo principal verificar a influência do avanço da ferramenta e do uso de fluido de corte em usinagem analisando a rugosidade de superfícies de peças de alumínio usinadas por torneamento cilíndrico externo, em um equipamento CNC Romi Centur 30D com comando Siemens, variando-se a velocidade de avanço da ferramenta, assim como a usinagem a seco e com fluido de corte. Foi realizada uma análise da caracterização química por Espectrometria de Massa para identificar a constituição do material utilizado. Foi executado o processo de usinagem em 10 peças de alumínio, com velocidade de corte de 220 m/min em todos os testes, variando-se o avanço da ferramenta (0,1, 0,15, 0,2, 0,25, 0,30 mm/rot), e para cada valor de avanço diferente foi realizado um ensaio à seco e um com fluido de corte. Após a usinagem as peças foram analisadas utilizando-se um rugosímetro Mitutoyo modelo SJ-310, para medição da Rugosidade Média (Ra) resultante. Concluiu-se que para valores de avanço de ferramenta de até 0,25 mm/rot, com velocidade de corte de 220 m/min, a presença do fluido de corte na usinagem não apresentou melhoria no resultado final. Somente com avanço de 0,30 mm/rot a presença do fluido de corte se mostrou mais eficiente que a usinagem a seco.Palavras-chave: Usinagem. Alumínio. Rugosidade. AbstractThe surface characteristics of a machined part is the result of several factors, among them the tool material used, heat generation and cutting parameters. This work had as main objective the analysis of the surface roughness of aluminum parts machined by external cylindrical turning in a CNC Romi Centur 30D equipment with Siemens command, varying the speed of tool advance, as well as the dry machining and with cutting fluid. An analysis of the chemical characterization was performed by Mass Spectrometry to identify the constitution of the material used. The machining process was carried out in 10 pieces of aluminum, with a cutting speed of 220 m/min in all tests. The tool advance (0,1, 0,15, 0,2, 0,25, 0,30 mm/rot), and for each different feed rate a dry test and one with cutting fluid were performed. After machining, the parts were analyzed using a Mitutoyo model SJ-310 rugosimeter to measure the resulting Average Roughness (Ra). It was concluded that for tool feed values up to 0.25 mm/rot, with a cutting speed of 220 m/min, the presence of the cutting fluid in the machining did not show improvement in the final result. Only with an advance of 0.30 mm/rot the presence of the cutting fluid was more efficient than the dry machining. Keywords: Machining, Aluminum, Roughness.


2011 ◽  
Vol 201-203 ◽  
pp. 2597-2600
Author(s):  
Zhan Feng Liu ◽  
Rui Liang Li

Through the analysis for steel of 4145H drill collar, Research into the various factors of cutting, such as the cutting tool material, cutting-tool angle and cutting parameters, combined with the actual structure of the workpiece and the superlong deep-hole processing method for study. In the test, the machining process is analyzed, especially the process of boring and honing. The test result indicates that the trepanning process is stable and reliable to solve the superlong deep hole (Φ71mm×7500mm) of 4145H drill collar steel processing problems of production if the optimizing cutting method is appropriate and the cutting tools and the cutting parameters are rational.


2013 ◽  
Vol 10 (1) ◽  
pp. 12-17
Author(s):  
Karol Vasilko

Abstract Tendencies towards increasing cutting speeds during machining can be observed recently. The first wave of increasing cutting speeds occured in the 60s of the previous century. However, suitable tool material was not available at that time. Increasing cutting speed is possible only following the development of cutting material, resistant against high temperatures, abrasive, adhesive and diffusive wear. It is obvious that the process of chip creation, quality of machined surface, dynamics of machining process and temperature of cutting change considerably with cutting speed. To be able to apply higher cutting speeds in production machining, it is necessary to know the dependence of those characteristics on cutting speed. Some of those phenomena, which are linked with cutting speed, will be explained in the paper. Key words: machining, cutting speed, tool durability, surface quality


Sign in / Sign up

Export Citation Format

Share Document