Development of Super-Hard Cutter Material

2013 ◽  
Vol 341-342 ◽  
pp. 3-7
Author(s):  
Hui Ying Feng ◽  
Xiao Jing Li

Super-hard tool material is a main research point of mechanical engineering because of excellent performance. The development of technology for high-speed cutting process could enhance the machining quality and surface precision. It is a difficulty thing to get higher finished surface for traditional machining process. However, the super-hard cutter material could enhance the finished performance of tool material. For example, the wearing resistance, high stability of PCD (polycrystalline diamond) and PCBN (poly cubic boron nitride) can get more information for obtaining higher finished surface quality. The author introduces super-hard cutters materials (PCD and PCBN) development, and discusses several material properties. The features of materials used in different cutting fields are discussed.

2011 ◽  
Vol 84-85 ◽  
pp. 228-231
Author(s):  
Jing Su ◽  
Yu Hua Zhang ◽  
Di Wang

For the excellent properties, super-hard tool material has received much attention from researchers. The development of super-hard tool material for high-speed cutting could brought high machining quality and surface precision. For an engineer, adopt high performance of tool material, for example wearing resistance, high stability of PCD (polycrystalline diamond) and PCBN (poly cubic boron nitride) can get more information for obtaining higher finished surface quality that cannot acquire just by common cutting process. This paper introduces super-hard cutters materials (PCD and PCBN) development, and discusses several material properties. The features of materials used in different cutting fields are given.


2011 ◽  
Vol 480-481 ◽  
pp. 676-680 ◽  
Author(s):  
Ji Bao Liu ◽  
Zheng Fang Shi ◽  
Xiao Jing Li ◽  
Di Wang

The CIMS development and the high-speed cutting has given a higher demands on cutter performance. It is an tremendous tendency of studying excellent wearing resistance and high stability. PCD (polycrystalline diamond) and PCBN (poly cubic boron nitride) can obtain more higher finished surface quality, which cannot acquire by regular cutting process. This study introduces super-hard cutters materials (PCD and PCBN) development, and discusses two kinds of material properties, The features of them used in different cutting fields are given.


2008 ◽  
Vol 2 (5) ◽  
pp. 348-353 ◽  
Author(s):  
Yoji Umezaki ◽  
◽  
Yasutsune Ariura ◽  
Toshio Suzuki ◽  
Ryohei Ishimaru ◽  
...  

The hobbing finish of hard gear teeth such as case-hardened gears is anticipated for practical use in high efficiency production. We studied wear and finished surface properties in cutting tests using a cubic boron nitride (cBN) hob cutter in high-speed cutting at 900 m/min of case-hardened steel. The cBN content in tip ingredients is related to wear, and tips high in cBN content are superior in wear resistance. The high thermal conductivity of cBN tips helps transfer cutting temperature heat to chips, melting and adhering them to the relief surface. Flaking may occur on the cutting edge but new chipping does not occur although chipping may exist after grinding. Finished surface roughness is influenced by horning on the cutting edge. Round horning leads to a smooth surface. High-speed finishing with cBN-tipped hobs is analyzed in view of cBN tip grinding and finished surface properties, in addition to wear properties.


2016 ◽  
Vol 856 ◽  
pp. 125-128
Author(s):  
Athanasios G. Mamalis ◽  
G. Tokhtar ◽  
Sergiy Lavrynenko

At the present time the polymers are reliable and effective alternative to more traditional materials for many applications especially for bioengineering. Achievement of high quality biopolymeric components demands particular conditions for the machining process and its control. This report is devoted to method for operation control of the high speed cutting process by measurement of vibrating acceleration.


2013 ◽  
Vol 10 (1) ◽  
pp. 12-17
Author(s):  
Karol Vasilko

Abstract Tendencies towards increasing cutting speeds during machining can be observed recently. The first wave of increasing cutting speeds occured in the 60s of the previous century. However, suitable tool material was not available at that time. Increasing cutting speed is possible only following the development of cutting material, resistant against high temperatures, abrasive, adhesive and diffusive wear. It is obvious that the process of chip creation, quality of machined surface, dynamics of machining process and temperature of cutting change considerably with cutting speed. To be able to apply higher cutting speeds in production machining, it is necessary to know the dependence of those characteristics on cutting speed. Some of those phenomena, which are linked with cutting speed, will be explained in the paper. Key words: machining, cutting speed, tool durability, surface quality


2014 ◽  
Vol 1017 ◽  
pp. 406-410 ◽  
Author(s):  
Hitoshi Sumiya ◽  
Katsuko Harano

Wear characteristics of binder-less (single-phase) nanopolycrystalline diamond (NPD) and cubic boron nitride (BL-PcBN) were investigated by rubbing them against various ceramics such as SiO2, Si3N4, Al2O3 and SiC. The wear rates of NPD and BL-PcBN against SiO2 and Si3N4 at high speed rubbing (280-360 m/min) at a loading pressure of 55 MPa (starting condition) were considerably high, indicating the main wear process is a chemical reaction. BL-PcBN specimens were found to be worn at much higher (more than ten times) rates than NPD, suggesting that cBN highly reacts with these ceramics in comparison with diamond under the experiment condition.


2011 ◽  
Vol 338 ◽  
pp. 701-705
Author(s):  
Xiao Jun Zhu ◽  
Wen Sheng Xia

The key technology of the cutter that cutting hardened steel was researched by high speed milling machining method. At first ,three cutting elements of high speed milling machining was narratived, and we can obtain the principle of selection of parameters of cutting velocity, feed per tooth, longitudinal cutting depth and cutting width of axial, etc. With HSM ,we discussed the performance and selection points of tool material of coated cemented carbide, ceramic, cubic boron nitride , synthetic diamond and so on, and obtained the effect of the main tool geometry for the cutting process in HSM. The second, it analysised type and reason of damage of high speed cutting tools, and introduced three detection methods of tools. Finally, it was summarized and concluded.


2011 ◽  
Vol 179-180 ◽  
pp. 49-54
Author(s):  
Chun Mei Yang ◽  
Yan Ma

In the paper the theory of cutting wood fiber on micron-level has been put forward, that is the cutting power of micron flake wood fiber is much smaller than the mechanical power consumed by grinding. Therefore, the manufacture method for micron flake wood fiber is a kind of way of materials preparation, which can economize energy, decrease in consumption and pollution. From the theoretical analysis, only a reasonable cutting-arrangement on direction can significantly reduce the power. So in the condition of reducing power, relying on pure shear to fracture fibers in tissue is the best effort, at the same time through the vertical ultra-high-speed cutting in grain, the micron filament fibers will be cut out. The influences produced by various factors for the formation of flake fibers have been verified through testing, including the improved tool material, the wood grain, the cutting speed and the improvements for locating specimen.Through the improved method for sluggish wood-fiber cutting, not only does this method reduce power consumption, but also decrease the probability of fiber cut off and substantial increase fiber’s length and quality. Moreover, after these flake fibers having been rescheduled, the elastic modulus of fiber MHFB hot pressed out can reach 5171Mpa, and the grip force of that can reach 1933N.


Author(s):  
Balla S Prasad ◽  
Chandra M KarakaVVNR ◽  
Venkata S Annavarapu

The investigation of surface roughness in machined materials/products has proven to be a difficult undertaking. The surface quality is determined not only by the parameters but also by the cutting conditions. Surprisingly, a study indicated that when analysing the quality of machining processes currently being done, surface morphology has a significant impact on tool performance. PCD (Polycrystalline diamond) and PCBN (Poly cubic boron nitride) cutting tools produce a better surface finish, which is explored in the machining of Al-Mg/Zr/TiO2 (15%), nano metal matrix composites (NMMC). The study primarily focuses on determining the best parameters for end milling NMMCs in tests for long-term production sustainability. Using scanning electron microscopy, microstructural study of the machined surface will aid in finding the parameters responsible for the cause of surface integrity. The work focusses on analysing tool performance by monitoring the machining process in real time using signal characteristics, forecasting vibrations (displacement) and machine outputs using surface topography and chip analysis. The tool failure was acquired by establishing a correlation between displacement (vibrations) and post machining outcome of experimental study, as a result, the evolution of displacement in the PCBN tool is 24.7 μm, which is better compared to 34.3 μm in the PCD tool at 3000 r/min. PCBN outperformed PCD with a 1.82 μm surface roughness, resulting in longer tool life. Thus, this economical reliable empirical method the problem of finding difficulty identifying the causing of tool wear and failure by correlating sensor signals features with experimental results.


2008 ◽  
Vol 375-376 ◽  
pp. 454-458
Author(s):  
Dao Chun Xu ◽  
Ping Fa Feng ◽  
Jing Feng Zhi ◽  
Ding Wen Yu ◽  
Zhi Jun Wu

The physical simulation of high-speed cutting (HSC) is a hot research in cutting field. Dynamic physical simulation is the key technical difficulty of physical simulation. It can afford the machining process parameters quickly and efficiently, such as cutting stress, cutting temperature, tool wear etc., which have important academic and practical value. The cutting theoretical mathematical model based on the elastic-plastic mechanics and tribology was built up. The two-dimensional / three-dimensional (2D/3D) HSC dynamic physics simulation models were built up by the finite element method. The stress, thermal distribution and tool load etc. during the high speed machining (HSM) was obtained. These parameters provided key technical basis for the establishment and optimization of HSM parameters. They can save much machining experiments cost and improve the processing efficiency.


Sign in / Sign up

Export Citation Format

Share Document