Impurities and Point Defects in GaAs and AlAs Grown by Atomic Layer Epitaxy

1993 ◽  
Vol 117-118 ◽  
pp. 291-296
Author(s):  
K. Ikuta ◽  
Haruki Yokoyama ◽  
Naohisa Inoue
1992 ◽  
Vol 262 ◽  
Author(s):  
H. Yokoyama ◽  
K. Ikuta ◽  
N. Inoue

ABSTRACTWe investigate the intrinsic point defects in epilayers grown by atomic layer epitaxy (ALE). Ga vacancies and antisite As atoms in the epilayers are detected by photoluminescence spectroscopy. This shows that the ALE epilayer was grown under As-rich conditions. We propose increasing the TMG flux to reduce the number of point defects. With this method, the number of point defects in ALE epilayers can be decreased to less than that in conventionally grown epilayers. Moreover, it is'found that these point defects are formed by the incomplete Ga coverage, not by the steric hindrance as previously suggested. The carbon concentration is decreased by one order of magnitude by using nitrogen instead of hydrogen as the carrier gas. As an application of this low defect density, we fabricated a GaAs/AlAs resonant tunneling diode and observed the negative resistance at room temperature.


2020 ◽  
Vol 59 (SG) ◽  
pp. SGGF10
Author(s):  
Masahiro Kawano ◽  
Ryo Minematsu ◽  
Tomohiro Haraguchi ◽  
Atsuhiko Fukuyama ◽  
Hidetoshi Suzuki

1996 ◽  
Vol 80 (4) ◽  
pp. 2363-2366 ◽  
Author(s):  
Hiroyuki Fujiwara ◽  
Toshiyuki Nabeta ◽  
Isamu Shimizu ◽  
Takashi Yasuda

1989 ◽  
Vol 55 (3) ◽  
pp. 244-246 ◽  
Author(s):  
Weon G. Jeong ◽  
E. P. Menu ◽  
P. D. Dapkus

1994 ◽  
Vol 33 (Part 2, No. 9B) ◽  
pp. L1292-L1294 ◽  
Author(s):  
Haruki Yokoyama ◽  
Masafumi Tanimoto ◽  
Masanori Shinohara ◽  
Naohisa Inoue

1996 ◽  
Vol 6 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Minna Nieminen ◽  
Lauri Niinistö ◽  
Eero Rauhala

1995 ◽  
Vol 387 ◽  
Author(s):  
J. L. Hoyt ◽  
P. Kuo ◽  
K. Rim ◽  
J. J. Welser ◽  
R. M. Emerson ◽  
...  

AbstractMaterial and device challenges for Rapid Thermal Processing (RTP) of heterostructures are discussed, focusing on RTP-based epitaxy in the Si/Si1−xGex system. While RTP-based heteroepitaxy offers enhanced processing flexibility, it also poses significant challenges for temperature measurement and control. Several examples of Si/Si1−xGex device structures are discussed from the point of view of the sensitivity of device parameters to variations in layer thickness and composition. The measured growth kinetics for Si and Si1−xGex are then used to estimate growth temperature tolerances for these structures. Demanding applications are expected to require temperature control and uniformity to within 0.5°C.Future research challenges include the fabrication of structures with monolayer thickness control using self-limited growth techniques. Atomic layer epitaxy (ALE) is a well-known example of such a growth technique. In ALE, the wafer is cyclically exposed to different reactants, to achieve layer-by-layer growth. An RTP-based atomic layer epitaxy process, and its application to the growth of CdTe films, is briefly discussed. The extension to Column IV alloys follows readily. The RTP-based process enables self-limited growth for precursor combinations for which isothermal ALE is not feasible.


Sign in / Sign up

Export Citation Format

Share Document