Al-X (X=Nb, Cr, Fe) Ultra-High Strength In-Situ Composite Wire

2000 ◽  
Vol 331-337 ◽  
pp. 1133-1138 ◽  
Author(s):  
Toshiro Kobayashi ◽  
Hiroyuki Toda
2010 ◽  
Vol 168-170 ◽  
pp. 889-894
Author(s):  
Jun Zhao ◽  
Zhi Wang ◽  
Han Zhang ◽  
Hong Yan Zhai ◽  
Quan Xing Wen ◽  
...  

In this paper, Q235 steel was investigated in order to manufacturing ultra-high strength material. The process of severe cold-rolling and low temperature annealing of lath martensite effectively reduced the crystal size from about 300 nm to 20 nm, and introduced mass weak interfaces in steel, has been demonstrated a new promising technique for producing in-situ composite multi-nanolayer steel with ultra-high strength (b 2112 MPa). Cold rolling and subsequent annealing have great impact on microstructure evolution as well as material mechanical properties. In the as-rolled state, the strength is approximately four times increased than as-received material (hot-rolled state, b 515 MPa), which is attributed to work hardening and grain refining during cold rolling. As the cold-rolled sample subjected to further annealing below 500 , deformed microstructure underwent further recovery and recrystallization, finally became refined equiaxed grains, microstructure characteristics along rolling direction arrangement was decreased; In addition to ultrafine ferrite grains, nano-carbides precipitated uniformly in the specimen annealed at 500 , total elongation increased to 16%, the corresponding yield strength was 1208MPa, much higher than that of as-received samples. The phenomenon of fracture delamination was observed from the specimens, which were cold-rolled and annealed at 500 , and the delamination plane was parallel to the rolling plane. In-situ composite weak interfaces effect has great impact on the fracture surface.


2000 ◽  
Author(s):  
Chitoshi Masuda ◽  
Yoshihisa Tanaka

Abstract The new electrical conductive material, Cu-15wt%Cr in-situ composite, was developed for the application of lead frame, high field magnet and trolley wire. The Cu-Cr composite was fabricated by casting method in vacuum and forged, solution-treated, and cold drawn (η = 4.66 and 6.94). In this paper the cold drawn Cu-Cr composite was tested under cyclic loading at room temperature in comparison to the data for pure copper. The fatigue stresses decreased with increasing the number of cycles to failure and the double -knees were not seen on the S-N curves for both alloys as in other face centered cubic materials such as aluminum alloys and high strength steels, such as spring steels and carburized steels. The fatigue strength of Cu-Cr composite is double that for pure copper. The fatigue strength of Cu-Cr composite with cold drawing at η = 6.94 is higher than that at η = 4.66 tested under an axial loading (R = 0.1). On the fatigue fracture surface, the fatigue crack initiated from the un-dissolved chromium particle situated beneath the specimen surface and the crack direction was changed along the chromium fiber. In order to improve the fatigue strength of Cu-Cr composite it is very important that the size and amount of un-dissolved chromium particles would be reduced.


2013 ◽  
Vol 668 ◽  
pp. 804-807
Author(s):  
Lan Li ◽  
Lin Sheng Li ◽  
Chang Jun Qiu

In order to meet the need of high-strength and high-electrical conductivity copper alloys in industry. A method of making high-strength and high-electrical conductivity copper alloys is discussed in this paper. This method uses the technology of heated mold continuous casting to make Cu-Cr alloy. Because it utilizes the high electrical conductivity of copper matrix and high strength of the chromium phase, the in-situ composite Cu-Cr alloy with directional solidification structure is got. The in-situ composite Cu-Cr alloy has good properties and will be widely used in industry.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20486-20497
Author(s):  
Zhiyan Liu ◽  
Rui Ma ◽  
Wenjie Du ◽  
Gang Yang ◽  
Tao Chen

Chitosan hydrogel is regenerated from alkali/urea aqueous solution and the lithium sulfonate second network is introduced by electron beam radiation-initiated in situ free radical polymerization. The freeze-dried aerogel has CO2 capture capacity.


2007 ◽  
Vol 22 (2) ◽  
pp. 428-436 ◽  
Author(s):  
S. Jayalakshmi ◽  
J.P. Ahn ◽  
K.B. Kim ◽  
E. Fleury

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.


Sign in / Sign up

Export Citation Format

Share Document