Development of Thermoelectric Cooling Devices with Graded Structure

2005 ◽  
Vol 492-493 ◽  
pp. 151-156 ◽  
Author(s):  
Hitoshi Kohri ◽  
Ichiro Shiota

Every thermoelectric material shows high performance at a specific narrow temperature range. The temperature range with high performance can be expanded by joining the materials with different peak temperature. This is the concept of a functionally graded material (FGM) for thermoelectric materials. Bismuth telluride is the best material for cooling devices at around room temperature. Then we investigated the thermoelectric cooling properties for bismuth telluride with two step graded structure. FGM samples were fabricated by three methods. The first FGM was synthesized by in situ method. The second one was fabricated by joining in a hot-press equipment. The last one was composed by joining with solder. Thermoelectric cooling properties were evaluated by observing the maximum temperature drop to electric current when the high temperature side was kept constant. The large temperature difference was obtained when the proper configuration of thermoelectric materials along the temperature gradient were performed. The coincidence of optimum electrical currents of composing materials is also essential to obtain the high cooling performance.

Author(s):  
Haiming Gu ◽  
Xinyu Li ◽  
S. G. Lu ◽  
Minren Lin ◽  
Xiaoshi Qian ◽  
...  

The electrocaloric effect (ECE) refers to the change in temperature and/or entropy of a dielectric material due to the electric field induced change of dipolar states. Giant ECE is discovered in P(VDF-TrFE) ferroelectric copolymers near ferroelectric-paraelectric (F-P) transition temperature which is normally much higher than room temperature. This paper presents the two defect-inducing methods to lower and broaden working temperature range of P(VDF-TrFE) based copolymers for ECE, and thus make it preferable for practical cooling device. Giant ECE is experimentally demonstrated in large temperature range (0–55°C). In addition, an electrocaloric oscillatory refrigerator (ECOR) was proposed and simulated by finite volume method and its high performance was theoretically demonstrated. Temperature gradient larger than 30 °C can be maintained across the two sides of a 1 cm device. For ΔT = 20 °C cooling condition, a high cooling power (5.4 W/cm2) and significantly higher coefficient of performance (COP) can be achieved (50% of Carnot efficiency).


Science ◽  
2019 ◽  
Vol 365 (6452) ◽  
pp. 495-498 ◽  
Author(s):  
Jun Mao ◽  
Hangtian Zhu ◽  
Zhiwei Ding ◽  
Zihang Liu ◽  
Geethal Amila Gamage ◽  
...  

Thermoelectric materials have a large Peltier effect, making them attractive for solid-state cooling applications. Bismuth telluride (Bi2Te3)–based alloys have remained the state-of-the-art room-temperature materials for many decades. However, cost partially limited wider use of thermoelectric cooling devices because of the large amounts of expensive tellurium required. We report n-type magnesium bismuthide (Mg3Bi2)–based materials with a peak figure of merit (ZT) of ~0.9 at 350 kelvin, which is comparable to the commercial bismuth telluride selenide (Bi2Te3–xSex) but much cheaper. A cooling device made of our material and p-type bismuth antimony telluride (Bi0.5Sb1.5Te3) has produced a large temperature difference of ~91 kelvin at the hot-side temperature of 350 kelvin. n-type Mg3Bi2-based materials are promising for thermoelectric cooling applications.


2015 ◽  
Vol 3 (40) ◽  
pp. 10597-10603 ◽  
Author(s):  
Zhenglong Tang ◽  
Lipeng Hu ◽  
Tiejun Zhu ◽  
Xiaohua Liu ◽  
Xinbing Zhao

We combine Se alloying, SbI3 doping and repeated hot deformation to obtain high-performance n-type Bi2Te3 based mid-temperature thermoelectric materials for power generation.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 189 ◽  
Author(s):  
S Parveen ◽  
S Victor Vedanayakam ◽  
R Padma Suvarna

In space applications, the radioisotope thermoelectric generators are being used for the power generation. The energy storage devices like fuel cells, solar cells cannot function in remote areas, in such cases the power generating systems can work successfully for generating electrical power in space missions. The efficiency of thermo electric generators is around 5% to 8% . Bismuth telluride has high electrical conductivity (1.1 x 105S.m /m2) and very low thermal conductivity (1.20 W/ m.K). A Thermoelectric generator has been built up consisting of a Bi2Te3 based on thermoelectric module. The main aim of this is when four thermoelectric modules are connected in series, the power and efficiency was calculated. The thermoelectric module used is TEP1-1264-1.5. This thermoelectric module is having a size of 40mmx40mm. The hot side maximum temperature was 1600C where the cold side temperature is at 400C. At load resistance, 15Ω the maximum efficiency calculated was 6.80%, at temperature of 1600C. The maximum power at this temperature was 15.01W, the output voltage is 16.5V, and the output current is 0.91A. The related and the corresponding graphs between efficiency, power, output voltage, output current was drawn at different temperatures. The efficiency of bismuth telluride, thermoelectric module is greater than other thermoelectric materials.  


2007 ◽  
Vol 336-338 ◽  
pp. 864-867
Author(s):  
Wei Ren ◽  
Xue Quan Liu ◽  
Xiao Lin Wang ◽  
Hong Yi Jiang

Polycrystalline samples of Bi2Te3 based alloys were prepared by powder metallurgy processing including a melting-grinding and a sintering procedure of compacted pellets. Two sintering procedures as hot-pressing and spark plasma sintering (SPS) were employed. The thermoelectric properties and mechanical strength were measured in all case. Thermoelectric properties for p-type (Bi0.25Sb0.75)2Te3 and n-type Bi2(Te0.2Se0.8)3 changed with sintering temperature in both sintering methods. Mechanical strength and relative density increase with sintering temperature in two sintering procedures. The results firmly suggest that both sintering procedures are promising to obtain high performance thermoelectric materials.


2018 ◽  
Vol 18 (8) ◽  
pp. 4646-4652 ◽  
Author(s):  
Renshuang Zhai ◽  
Yehao Wu ◽  
Tie-Jun Zhu ◽  
Xin-Bing Zhao

Sign in / Sign up

Export Citation Format

Share Document