Absence of Dislocation Motion in 3C-SiC pn Diodes under Forward Bias

2007 ◽  
Vol 556-557 ◽  
pp. 223-226 ◽  
Author(s):  
Kevin M. Speer ◽  
David J. Spry ◽  
Andrew J. Trunek ◽  
Philip G. Neudeck ◽  
M.A. Crimp ◽  
...  

pn diodes have recently been fabricated from 3C-SiC material heteroepitaxially grown atop on-axis 4H-SiC mesa substrate arrays [1,2]. Using an optical emission microscope (OEM), we have investigated these diodes under forward bias, particularly including defective 3C-SiC films with in-grown stacking faults (SFs) nucleated on 4H-SiC mesas with steps from screw dislocations. Bright linear features are observed along <110> directions in electroluminescence (EL) images. These features have been further investigated using electron channeling contrast imaging (ECCI) [3]. The general characteristics of the ECCI images—together with the bright to dark contrast reversal with variations of the excitation error—strongly suggest that the bright linear features are partial dislocations bounding triangular SFs in the 3C-SiC films. However, unlike partial dislocations in 4H-SiC diodes whose recombination-enhanced dislocation motion serves to expand SF regions, all the partial dislocations we observed during the electrical stressing were immobile across a wide range of current injection levels (1 to 1000 A/cm2).

2010 ◽  
Vol 654-656 ◽  
pp. 1986-1989
Author(s):  
Koji Morita ◽  
Byung Nam Kim ◽  
Hidehiro Yoshida ◽  
Keijiro Hiraga

The densification mechanism in park-plasma-sintering (SPS) processing was examined in MgAl2O4 spinel. As the relative density ρt increases, that is, as the effective stress σeff decreases, stress exponent n evaluated from effective stress-densification rate relationship continuously varies from n  4 to n  1. TEM observation shows that significant stacking faults caused by partial dislocations are frequently observed in the low ρt region. The results suggest that, for spinel, the predominant densification mechanism in SPS processing changes with ρt from plastic flow by a partial dislocation motion in the low ρt region (n  4) to diffusion-related creep in the high ρt region (n  1).


2010 ◽  
Vol 63 ◽  
pp. 62-67
Author(s):  
Koji Morita ◽  
Byung Nam Kim ◽  
Hidehiro Yoshida ◽  
Keijiro Hiraga ◽  
Yoshio Sakka

The densification mechanism during the park-plasma-sintering (SPS) processing was examined in high purity MgAl2O4 spinel. As the density ρt increases, that is, as the effective stress σeff decreases, stress exponent n evaluated from σeff dependence of densification rate varies from n ≥ 4 in the low ρt region, n ≈ 2 in the intermediate ρt region to n ≈ 1 in the high ρt region. TEM observation shows that significant stacking faults caused by partial dislocations are observed in the low ρt region, but limited in the high ρt region. The ρt dependent densification behavior and microstructure suggest that the predominant densification mechanism during the SPS processing changes with ρt from plastic flow by partial dislocation motion for the low ρt region (n ≥ 4) to diffusion-related creep for the high ρt region (n ≈ 1).


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


2020 ◽  
Vol 16 ◽  
Author(s):  
Diogo L. R. Novo ◽  
Priscila T. Scaglioni ◽  
Rodrigo M. Pereira ◽  
Filipe S. Rondan ◽  
Gilberto S. Coelho Junior ◽  
...  

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation. Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed. Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwave-assisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using Association of Official Analytical Chemists International official method. Recovery tests and certified reference material analysis were performed. Animal feeds were analyzed using the proposed method. Results: Sample masses of 500 mg were efficiently digested using only 2 mol L -1 HNO3. The results obtained by the proposed method was not differing significantly (p > 0.05) from those obtained by the conventional and official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%) and relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1 ). Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ata Chizari ◽  
Mirjam J. Schaap ◽  
Tom Knop ◽  
Yoeri E. Boink ◽  
Marieke M. B. Seyger ◽  
...  

AbstractEnabling handheld perfusion imaging would drastically improve the feasibility of perfusion imaging in clinical practice. Therefore, we examine the performance of handheld laser speckle contrast imaging (LSCI) measurements compared to mounted measurements, demonstrated in psoriatic skin. A pipeline is introduced to process, analyze and compare data of 11 measurement pairs (mounted-handheld LSCI modes) operated on 5 patients and various skin locations. The on-surface speeds (i.e. speed of light beam movements on the surface) are quantified employing mean separation (MS) segmentation and enhanced correlation coefficient maximization (ECC). The average on-surface speeds are found to be 8.5 times greater in handheld mode compared to mounted mode. Frame alignment sharpens temporally averaged perfusion maps, especially in the handheld case. The results show that after proper post-processing, the handheld measurements are in agreement with the corresponding mounted measurements on a visual basis. The absolute movement-induced difference between mounted-handheld pairs after the background correction is $$16.4\pm 9.3~\%$$ 16.4 ± 9.3 % (mean ± std, $$n=11$$ n = 11 ), with an absolute median difference of $$23.8\%$$ 23.8 % . Realization of handheld LSCI facilitates measurements on a wide range of skin areas bringing more convenience for both patients and medical staff.


2012 ◽  
Vol 717-720 ◽  
pp. 387-390 ◽  
Author(s):  
Robert E. Stahlbush ◽  
Qing Chun Jon Zhang ◽  
Anant K. Agarwal ◽  
Nadeemullah A. Mahadik

The effects of Shockley stacking faults (SSFs) that originate from half loop arrays (HLAs) on the forward voltage and reverse leakage were measured in 10 kV 4H-SiC PiN diodes. The presence of HLAs and basal plane dislocations in each diode in a wafer was determined by ultraviolet photoluminescence imaging of the wafer before device fabrication. The SSFs were expanded by electrical stressing under forward bias of 30 A/cm2, and contracted by annealing at 550 °C. The electrical stress increased both the forward voltage and reverse leakage. Annealing returned the forward voltage and reverse leakage to nearly their original behavior. The details of SSF expansion and contraction from a HLA and the effects on the electrical behavior of the PiN diodes are discussed.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Jorge González-Rodríguez ◽  
Lucía Fernández ◽  
Yanina B. Bava ◽  
David Buceta ◽  
Carlos Vázquez-Vázquez ◽  
...  

Emerging contaminants (ECs) represent a wide range of compounds, whose complete elimination from wastewaters by conventional methods is not always guaranteed, posing human and environmental risks. Advanced oxidation processes (AOPs), based on the generation of highly oxidizing species, lead to the degradation of these ECs. In this context, TiO2 and ZnO are the most widely used inorganic photocatalysts, mainly due to their low cost and wide availability. The addition of small amounts of nanoclusters may imply enhanced light absorption and an attenuation effect on the recombination rate of electron/hole pairs, resulting in improved photocatalytic activity. In this work, we propose the use of silver nanoclusters deposited on ZnO nanoparticles (ZnO–Ag), with a view to evaluating their catalytic activity under both ultraviolet A (UVA) and visible light, in order to reduce energetic requirements in prospective applications on a larger scale. The catalysts were produced and then characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES). As proof of concept of the capacity of photocatalysts doped with nanoclusters, experiments were carried out to remove the azo dye Orange II (OII). The results demonstrated the high photocatalytic efficiency achieved thanks to the incorporation of nanoclusters, especially evident in the experiments performed under white light.


1999 ◽  
Vol 572 ◽  
Author(s):  
W. L. Samey ◽  
L. Salamanca-Riba ◽  
P. Zhou ◽  
M. G. Spencer ◽  
C. Taylor ◽  
...  

ABSTRACTSiC/Si films generally contain stacking faults and amorphous regions near the interface. High quality SiC/Si films are especially difficult to obtain since the temperatures usually required to grow high quality SiC are above the Si melting point. We added Ge in the form of GeH2 to the reactant gases to promote two-dimensional CVD growth of SiC films on (111) Si substrates at 1000°C. The films grown with no Ge are essentially amorphous with very small crystalline regions, whereas those films grown with GeH2 flow rates of 10 and 15 sccm are polycrystalline with the 3C structure. Increasing the flow rate to 20 sccm improves the crystallinity and induces growth of 6H SiC over an initial 3C layer. This study presents the first observation of spontaneous polytype transformation in SiC grown on Si by MOCVD.


1996 ◽  
Vol 423 ◽  
Author(s):  
W. Huang ◽  
M. Dudley ◽  
C. Fazi

AbstractDefect structures in (111) 3C-SiC single crystals, grown using the Baikov technique, have been studied using Synchrotron White Beam X-ray Topography (SWBXT). The major types of defects include complex growth sector boundary structures, double positioning twins, stacking faults on { 111 } planes, inclusions and dislocations (including growth dislocations and partial dislocations bounding stacking faults). Detailed stacking fault and double positioning twin configurations are determined using a combination of Nomarski interference microscopy, SEM and white beam x-ray topography in both transmission and reflection geometries. Possible defect generation phenomena are discussed.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


Sign in / Sign up

Export Citation Format

Share Document