Fabrication and Investigation of Curved PDMS Micro Nozzle/Diffuser

2008 ◽  
Vol 594 ◽  
pp. 357-362
Author(s):  
Yu Tang Chen ◽  
Chin Chun Hsu ◽  
Shung Wen Kang ◽  
Lung Chi Wu

This study describes the results on the fabrication, testing and analysis of curved micro nozzle/diffuser. First, we use different polymers, SU-8 and polydimethylsiloxane (PDMS) for the fabrication of curved micro nozzle/diffuser. By using the low-temperature bonding technique, we can combine the structure with the glass and accomplish the component. In order to understand the investigation and analysis of fluid dynamics characteristics, we measure the pressure and flow of curved micro nozzle/diffuser and the commercially available software CFD was adopted for analyzing the performance of straight and curved micro nozzle/ diffuser. If we have a given Reynolds number, the experimental data shows the pressure loss of the diffuser is lower than that of the nozzle due to the change of momentum. Furthermore, the results also indicate that the pressure loss coefficient of both curved nozzle and diffuser decrease with the Reynolds number. All the experimental and numerical data Eventually are compared with each other. The numerical data was found good agreement with previous analytic solution and experimental results. In sum, the theoretical analysis and design basis from this study can be formulated as the reference in the fabrication of micro nozzle/diffuser.

Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Bor-Yuan Shew ◽  
Chi-Chuan Wang

In this study, an analysis of the performance of micro nozzle/diffusers is performed and fabrication of the micro nozzle/diffuser is conducted and tested. It is found that the pressure loss coefficient for the nozzle/diffuser decreases with the Reynolds number. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. For the effect of nozzle/diffuser length on the pressure loss coefficient, it is found that the influence is rather small. At a fixed volumetric flowrate, a “minimum” phenomenon of the pressure loss coefficient vs. nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20° . It is likely that the departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser.


2004 ◽  
Vol 127 (2) ◽  
pp. 388-392 ◽  
Author(s):  
Ho-Yun Nam ◽  
Jong-Man Kim ◽  
Kyung-Won Seo ◽  
Seok-Ki Choi

An experimental study has been carried out to measure the pressure loss at the side orifice of a liquid metal reactor fuel assembly. The characteristics of the pressure loss at the side orifice are investigated using the experimental data measured from 17 different types of side orifices that have different geometric shapes, dimensions, and arrangements of nozzles, and a correlation that covers the whole flow range by one equation is developed. The error range of the correlation is within ±10%, and most of the errors occurred in a region where the Reynolds number is small. The range of Reynolds numbers based on the hydraulic diameter of the orifice is 2000–350,000. It is found that the geometric factor is the most important parameter for the pressure loss when the Reynolds number is >30,000. As the Reynolds number becomes smaller, its effect becomes larger, and when the Reynolds number is small, it is the most important parameter for the pressure loss at the side orifices. The measured data shows a trend that the pressure loss coefficient increases as the number of orifices increases, and the effect of the longitudinal arrangement is small.


Author(s):  
M. K. Chyu

The heat transfer distributions for flow passing through a two-pass (one-turn) and a three-pass (two-turn) passages with 180-degree sharp turns are studied by using the analogous naphthalene mass transfer technique. Both passages have square cross-section and length-to-height ratio of 8. The passage surface, including top wall, side walls and partition walls, is divided into 26 segments for the two-pass passage and 40 segments for the three-pass passage. Mass transfer results are presented for each segment along with regional and overall averages. The very non-uniform mass transfer coefficients measured around a sharp 180-degree turn exhibit the effects of flow separation, reattachment and impingement, in addition to secondary flows. Results of the three-pass passage indicate that heat transfer characteristics around the second turn is virtually the same as that around the first turn. This may imply that, in a multiple-pass passage, heat transfer at the first turn has already reached the thermally developed (periodic) condition. Over the entire two-pass passage, the heat transfer enhancement induced by the single-turn is about 45% to 65% of the fully developed values in a straight channel. Such a heat transfer enhancement decreases with an increase in Reynolds number. In addition, overall heat transfer of the three-pass passage is approximately 15% higher than that of the two-pass one. This 15% increase appears to be Reynolds number independent. The pressure loss induced by the sharp turns is found to be very significant. Within the present testing range, the pressure loss coefficient for both passages varies significantly with the Reynolds number.


2019 ◽  
Vol 8 (4) ◽  
pp. 12612-12621

Most of the previous investigations on flow control devices have been reported on single-stage perforated plate with variable porosity and circular holes. This is the reason that functional relationships for pressure loss coefficient or Euler number (Eu) variation reported earlier are a strong function of porosity. In this paper, multi-stage filter design with constant porosity has been investigated using an experimentally validated numerical model. Several researchers have worked on the design of the producer gas cleaning system by using different filter materials such as electrostatic precipitators, wet scrubber, ceramics, fabric, and sand bed separately. However, these methods are inefficient in the final stages of the gas purification. Hence, multi-stage filters designs are conceived and investigated. Effect on pressure loss coefficient variation has been investigated for different hole geometry having same porosity with multiple filters. In a first, four new correlations has been developed for Eu variation as function of number of filters and different hole shapes. The Eu variation has the form: Eu = a(N)b (t/dh) c where N is the number of filters, a, b and c are constants whose value depend on the type of hole geometry. The prediction from correlation agrees within 4% accuracy with the numerical data


2006 ◽  
Author(s):  
Murthy Lakshmiraju ◽  
Jie Cui

Close-coupled fittings are widely used in piping system to change the direction of the fluid and to connect pipes. These fittings cause losses and these losses play a significant role in the total pressure loss in a duct system. Numerical simulations were performed using Fluent on laminar flows in a circular pipe to obtain pressure loss coefficients associated with different fittings of two elbows and three elbows. Each configuration was studied with different intermediate distances between fittings of 0, 1, 3, 5, and 10 pipe diameters. It was observed that for a Reynolds number of 100 and for an intermediate distance less than 5 pipe diameters, the pressure loss coefficient for the coupled fittings was less than that of the uncoupled fittings. While the fittings become uncoupled when the intermediate distance was greater than 5 pipe diameters. Variation of velocity along the axis of the pipe was analyzed to understand the mechanism of the pressure loss for various fitting configurations with different intermediate distances.


Author(s):  
K-S Yang ◽  
M-S Liu ◽  
I-Y Chen ◽  
C-C Wang

In this study, an analysis of the performance of micronozzle/diffusers is performed and fabrication of the micronozzle/diffuser is conducted and tested. It is found that the ratio of the loss coefficient of nozzle and diffuser increases with the Reynolds number and with the opening angle. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. At a fixed volumetric flowrate, a ‘minimum’ phenomenon of the pressure loss coefficient versus nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20°. This is because of the presence of flow separation. The departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser. Hence, a more complicated two- and three-dimensional model is adopted to verify this flow separation inside the diffuser. For the simulation of the two-dimensional case, asymmetry flow field is seen for low Reynolds number region, whereas this phenomenon is not seen under three-dimensional simulation due to the confinement of the side wall.


1981 ◽  
Vol 103 (3) ◽  
pp. 415-422 ◽  
Author(s):  
S. C. Lau ◽  
E. M. Sparrow ◽  
J. W. Ramsey

A systematic experimental study was carried out to determine how the heat transfer characteristics of a turbulent tube flow are affected by the length and diameter of a cylindrical plenum chamber which delivers fluid to the tube. The net pressure loss due to the presence of the plenum was also measured. The experimental arrangement was such that the fluid experiences a consecutive expansion and contraction in the plenum before entering the electrically heated test section. Air was the working fluid, and the Reynolds number was varied over the range from 5,000 to 60,000. It was found that at axial stations in the upstream portion of the tube, there are substantially higher heat transfer coefficients in the presence of longer plenums. Thus, a longer plenum functions as an enhancement device. On the other hand, the plenum diameter appears to have only a minor influence in the range investigated (i.e., plenum diameters equal to three and six times the tube diameter). The fully developed Nusselt numbers are independent of the plenum length and diameter. With longer plenums in place, the thermal entrance length showed increased sensitivity to Reynolds number in the fully turbulent regime. The pressure loss coefficient, which compares the plenum-related pressure loss with the velocity head in the tube, increases more or less linearly with the plenum length. With regard to experimental technique, it was demonstrated that guard heating/cooling of the electrical bus adjacent to the tube inlet is necessary for accurate heat transfer results at low Reynolds numbers but, although desirable, is less necessary at higher Reynolds numbers.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ali Nouri-Borujerdi ◽  
Ardalan Shafiei Ghazani

In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a further increase in Reynolds number. At a given inlet Mach number, the maximum value of the ratio of the reattachment length to step height occurs at the expansion ratio of about two. Moreover, the pressure loss coefficient is a monotonic increasing function of expansion ratio and increases drastically by increasing Mach number. Increasing inlet Mach number from 0.1 to 0.2 results in an increase in pressure loss coefficient by less than 5%. However, increasing inlet Mach number from 0.4 to 0.6 results in an increase in loss coefficient by 70–100%, depending on the expansion ratio. It is revealed that increasing Reynolds number beyond a critical value results in the loss of symmetry for planar expansions. Critical Reynolds numbers change adversely to expansion ratio. The flow regains symmetry when the flow becomes turbulent. Similar bifurcating phenomena are observed beyond a certain Reynolds number in the turbulent regime.


Author(s):  
Li-Jian Cheng ◽  
Wei-Jiang Xu ◽  
Hui-Ren Zhu ◽  
Ru Jiang

An efficient way to improve the efficiency of the aero engine is to increase the temperature of the turbine inlet, which requires more advanced turbine cooling techniques. The dimple heat transfer enhancement is a technique that can enhance the convective heat transfer of the surfaces by processing a certain arrangement of jet holes and dimples on the surfaces. The objective of this paper is to investigate the characteristics of heat transfer and pressure loss for an inline array of round jets impinging on the side of dimpled surface. Meanwhile, the results are compared to those of the impingement directly over the dimples and the flat surface. The investigated parameters are Reynolds number (Re) of 5000, 8000 and 11500, the ratio of jet-to-plate spacing to jet diameter (H/Dj) of 2, 4, 6 and 8, the ratio of dimple depth to dimple diameter (d/Dd) of 0.15, 0.25 and 0.29. Results show that increasing the Reynolds number can improve the heat transfer. The shallower dimples enhance higher heat transfer than the deeper ones. For the target surface, the side impingement conducts the highest improvement at H/Dj = 8, d/Dd = 0.15 and Re = 11500. The improvement is about 16% higher than that of the frontal impingement while this value is 7% when compared to the flat surface. However, for the jet surface at the same operating condition, the side impingement leads to the worst heat transfer performance by 25% and 15% lower than that of the frontal impingement and the flat surface, respectively. The higher Reynolds number causes higher total pressure loss. But the pressure loss coefficient of the side impingement is not significantly different from that of the frontal impingement and the flat surface.


Author(s):  
Yuting Jiang ◽  
Qun Zheng ◽  
Bo Liu ◽  
Jie Gao ◽  
Hai Zhang

A comparative study of the flow field and heat transfer characteristics between swirl and impingement of mist/air cooling on blade leading edge is carried out to find better cooling configuration for phase transition cooling. The Eulerian-Lagrangian particle tracking technique is used to investigate the mist/air cooling. Comparisons are made between these two cooling forms in such aspects as vortex structure, heat transfer enhancement, pressure loss, and thermal uniformity with and without mist injection. The influences of mist ratio and Reynolds numbers on these parameters are studied in this paper. Results show that the heat transfer is enhanced, pressure loss and the thermal uniformity is improved by the swirl flow created by vortex impingement. The heat transfer performance increases by about 46.2% and 51.9% for impingement and swirl cooling with 8% mist injection, and the pressure loss coefficient increases by 19%. The difference of heat transfer coefficient between swirl and impingement cooling with and without mist injection at high Reynolds number is larger than that at low Reynolds number. In addition, heat transfer non-uniform coefficient of swirl cooling is about 15% lower than impingement cooling.


Sign in / Sign up

Export Citation Format

Share Document