Low Temperature Growth of 3C-SiC Film on Si (111) by Plasma Assisted CVD

2009 ◽  
Vol 615-617 ◽  
pp. 161-164 ◽  
Author(s):  
Hideki Shimizu ◽  
Akira Kato

In order to demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystallinity of the films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 850 °C. Oriented polycrystalline 3C-SiC film grew under the C/Si of 3 – 5 with a-C. It is suggested that etching effects of growing surface by hydrogen radicals generated from C3H8 decomposition is lowered by lowering the substrate temperature. The crystallinity has been investigated by reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.

2008 ◽  
Vol 600-603 ◽  
pp. 235-238
Author(s):  
Hideki Shimizu ◽  
Akira Kato

In order to demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystallinity of the films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 950 °C. Nearly single-crystalline 3C-SiC film grew under the ratio of the flow rate of C3H8 to the flow rate of SiH4 (C/Si) of 2 - 2.5. From these results, it is suggested that C/Si shifts into higher with decreasing the substrate temperature. The crystallinity has been investigated by a reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.


2007 ◽  
Vol 556-557 ◽  
pp. 183-186 ◽  
Author(s):  
Hideki Shimizu ◽  
Akira Kato

The effects of C3H8 on the microstructures of the films on Si (111) have been investigated by changing the concentration of C3H8 from 0.5% to 5%. 3C-SiC film on Si (111) grown at the C3H8 concentration of 1% with relatively high flow rate of SiH4 (30 sccm) is single crystal and free from the contamination of W2C. By comparing the deposition rates of the films on Si (111) and Si (100) at different concentrations of C3H8, SiC growth on Si (111) is much more dependent on C3H8 concentration than that on Si (100). From these results it is suggested that SiC growth on Si (111) is strongly influenced by hydrogen radicals generated from C3H8 decomposition by the plasma and forms single crystal easier than on Si(100). It is expected that 3C-SiC epitaxial growth on Si (111) has higher deposition rate and lower substrate temperature than on Si (100). The crystallinity has been investigated by a reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.


2005 ◽  
Vol 483-485 ◽  
pp. 209-212
Author(s):  
Hideki Shimizu ◽  
Kensaku Hisada ◽  
Yosuke Aoyama

Effects of the flow rate of C3H8 passed through hydrogen plasma on deposition rates and^microstructures of 3C-SiC films on Si (100) substrate were investigated by a reflection electron diffraction, an X-ray diffraction and an ellipsometric measurement. The deposition rate of the films increased independently of the flow rate of C3H8 with increasing the flow rate of SiH4. The films grown with increasing the flow rate of C3H8 kept single crystalline structure even at high flow rate of SiH4. Hydrogen radicals generated from C3H8 decomposition by plasma increase with increasing the flow rate of C3H8, and play important rolls to keep epitaxial growth.


2012 ◽  
Vol 717-720 ◽  
pp. 181-184
Author(s):  
Hideki Shimizu ◽  
Takashi Watanabe

To demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystalline quality of the 3C-SiC films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 950 °C. The crystalline quality has been investigated by transmission electron microscope and X-ray diffraction. 3C-SiC is epitaxially grown on Si(111) and the 3C-SiC films are in either near single crystalline or highly oriented form with stacking faults and twin. It is expected that the film with good crystalline quality may grow at around 2.5 in the ratio of the flow rate of C3H8 to SiH4 and any microstructures of 3C-SiC films on Si (111) can be controlled by accurately controlling the ratio of C/Si.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2016 ◽  
Vol 16 (3) ◽  
pp. 83-88 ◽  
Author(s):  
B.V. Omidiji ◽  
R.H. Khan ◽  
M.S. Abolarin

Abstract The influence of the refractory coating which is a mixture of silica flour and kaolin on the surface roughness of the plate castings produced using evaporative patterns had been considered in this work. The kaolin was used as a binder and ratio method was employed to form basis for the factorial design of experiment which led to nine runs of experiments. Methyl alcohol at 99% concentration was used as the carrier for the transfer of the coating to the surface of the patterns. Pouring temperature was observed as a process parameter alongside the mix ratios of the coating. Attempts were made to characterize the refractory coating by using two methods; differential thermal analysis (DTA) and X-ray diffraction. Attempt was also made to characterize the casting material. Gating system design was done for the plate casting to determine the correct proportions of the gating parameters in order to construct the gating system properly to avoid turbulence during pouring of liquid metal. A digital profilometer was used to take the measurements of the surface roughness. It was observed that the mix ratio 90% silica flour-10% kaolin produced the lowest value of the surface roughness of the plate castings and had the lowest material loss in the DTA test. The pouring temperature of 650°C produced best casting.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


1996 ◽  
Vol 441 ◽  
Author(s):  
N. Sukidi ◽  
N. Dietz ◽  
U. Rossow ◽  
K. J. Bachmann

AbstractIn this contribution we report on the real-time monitoring of low temperature growth of epitaxial GaxIn1-xP/GaP heterostructures on Si(100) by pulse chemical beam epitaxy, using tertiary butylphosphine (TBP), triethylgallium (TEG), and trimethylindium (TMI) as source materials. Both step-graded and continuously graded heterostructures have been investigated. The composition of the GaxIn1-xP epilayers has been analyzed by various techniques including X-ray diffraction, Rutherford backscattering, Auger, and Raman spectroscopy. Good correlation has been found between X-ray diffraction, RBS, and Vegard's law compositional analysis. We used Ppolarized Reflectance Spectroscopy (PRS) and Laser Light Scattering (LLS) to monitor the growth rate and surface morphology during growth. The information gained by these techniques has been utilized in the improvement of the surface preconditioning as well as to optimize the initial heteroepitaxial nucleation and overgrowth process. We studied the optical response to the compositional changes in the surface reaction layer (SRL) during the exposure of the surface to either sequential or synchronous pulses of TEG and TMI. The cross sectional TEM analysis indicates that the synchronous exposure results in an abrupt GaxIn1-xP/GaP interface while the sequential exposure does not which may suggest a compositionally graded interlayer formation. For heteroepitaxial GaxIn1-xP films on Si, a buffer layer of GaP is found to be necessary for optimum uniformity of the GaxIn1-xP layer. The selective growth of GaxIn1-xP on Si(001) is accessed.


2019 ◽  
Vol 28 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Subhasish Sarkar ◽  
Arghya Mukherjee ◽  
Rishav Kumar Baranwal ◽  
Jhumpa De ◽  
Chanchal Biswas ◽  
...  

AbstractThe current study focuses on the parametric optimization of electroless Ni-Co-P coating considering surface roughness as a response using Box-Behnken Design (BBD) of experiment. The two bath parameters namely the concentration of cobalt sulphate and sodium hypophosphite were varied along with the bath temperature to predict the variation in surface roughness. Analysis of variance (ANOVA) method has been applied to determine the interactions of the substantial factors which dominate the surface roughness of the coating. The process parameters for surface roughness of the coating were optimized by successfully utilizing the statistical model of Box-Behnken Design (BBD) of experiment. From the BBD model, the optimum condition for the deposition of the coating has been evaluated. In that specific condition, the surface roughness of the as-deposited coating is found to be 0.913μm. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and X-Ray Diffraction (XRD) study have been utilized to characterize the electroless Ni-Co-P coating deposited in optimized condition.


Sign in / Sign up

Export Citation Format

Share Document