Key Radicals for Hetero-Epitaxial Growth of 3C-SiC on Silicon Substrates

2005 ◽  
Vol 483-485 ◽  
pp. 209-212
Author(s):  
Hideki Shimizu ◽  
Kensaku Hisada ◽  
Yosuke Aoyama

Effects of the flow rate of C3H8 passed through hydrogen plasma on deposition rates and^microstructures of 3C-SiC films on Si (100) substrate were investigated by a reflection electron diffraction, an X-ray diffraction and an ellipsometric measurement. The deposition rate of the films increased independently of the flow rate of C3H8 with increasing the flow rate of SiH4. The films grown with increasing the flow rate of C3H8 kept single crystalline structure even at high flow rate of SiH4. Hydrogen radicals generated from C3H8 decomposition by plasma increase with increasing the flow rate of C3H8, and play important rolls to keep epitaxial growth.

2007 ◽  
Vol 556-557 ◽  
pp. 183-186 ◽  
Author(s):  
Hideki Shimizu ◽  
Akira Kato

The effects of C3H8 on the microstructures of the films on Si (111) have been investigated by changing the concentration of C3H8 from 0.5% to 5%. 3C-SiC film on Si (111) grown at the C3H8 concentration of 1% with relatively high flow rate of SiH4 (30 sccm) is single crystal and free from the contamination of W2C. By comparing the deposition rates of the films on Si (111) and Si (100) at different concentrations of C3H8, SiC growth on Si (111) is much more dependent on C3H8 concentration than that on Si (100). From these results it is suggested that SiC growth on Si (111) is strongly influenced by hydrogen radicals generated from C3H8 decomposition by the plasma and forms single crystal easier than on Si(100). It is expected that 3C-SiC epitaxial growth on Si (111) has higher deposition rate and lower substrate temperature than on Si (100). The crystallinity has been investigated by a reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.


2009 ◽  
Vol 615-617 ◽  
pp. 161-164 ◽  
Author(s):  
Hideki Shimizu ◽  
Akira Kato

In order to demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystallinity of the films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 850 °C. Oriented polycrystalline 3C-SiC film grew under the C/Si of 3 – 5 with a-C. It is suggested that etching effects of growing surface by hydrogen radicals generated from C3H8 decomposition is lowered by lowering the substrate temperature. The crystallinity has been investigated by reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.


2008 ◽  
Vol 600-603 ◽  
pp. 235-238
Author(s):  
Hideki Shimizu ◽  
Akira Kato

In order to demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystallinity of the films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 950 °C. Nearly single-crystalline 3C-SiC film grew under the ratio of the flow rate of C3H8 to the flow rate of SiH4 (C/Si) of 2 - 2.5. From these results, it is suggested that C/Si shifts into higher with decreasing the substrate temperature. The crystallinity has been investigated by a reflection electron diffraction (RED) and a X-ray diffraction (XRD). The thickness and the surface roughness of the films were investigated by an ellipsometric measurement.


2006 ◽  
Vol 527-529 ◽  
pp. 299-302
Author(s):  
Hideki Shimizu ◽  
Yosuke Aoyama

3C-SiC films grown on carbonized Si (100) by plasma-assisted CVD have been investigated with systematic changes in flow rate of monosilane (SiH4) and propane (C3H8) as source gases. The deposition rate of the films increased monotonously and the microstructures of the films changed from 3C-SiC single crystal to 3C-SiC polycrystal with increasing flow rate of SiH4. Increasing C3H8 keeps single crystalline structure but results in contamination of α-W2C, which is a serious problem for the epitaxial growth. To obtain high quality 3C-SiC films, the effects of C3H8 on the microstructures of the films have been investigated by reducing the concentration of C3H8. Good quality 3C-SiC single crystal on Si (100) is grown at low net flow rate of C3H8 and SiH4, while 3C-SiC single crystal on Si (111) is grown at low net flow rate of C3H8 and high net flow rate of SiH4. It is expected that 3C-SiC epitaxial growth on Si (111) will take placed at a higher deposition rate and lower substrate temperature than that on Si (100).


1987 ◽  
Vol 91 ◽  
Author(s):  
Jack P. Salerno ◽  
J. W. Lee ◽  
R. E. McCullough ◽  
R. P. Gale

ABSTRACTGaAs epitaxial layers grown on Si substrates up to 4 inches in diameter by OMCVD are characterized with respect to the materials parameters important for their application for device and circuit manufacturing. The layers are characterized using commercial flatness and surface quality measurement instrumentation, x-ray diffraction, Schottky diode characteristics, and photoluminescence. The 4-inch diameter GaAs epilayers are a singleoriented phase and are of comparable quality to GaAs epilayers grown on smaller diameter Si substrates.


Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with a different N2 flow rate of 0, 12, 17, 25, 38, 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of the N2 flows. On the other hand, the resistivity increases, the crystal size decreases, and the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5 (130,040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, and dependent on the crystal size and crystal phase structure.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2021 ◽  
Vol MA2021-02 (34) ◽  
pp. 1005-1005
Author(s):  
Hrishikesh Das ◽  
Swapna Sunkari ◽  
Joshua Justice ◽  
Danielle Hamann ◽  
Tamzin Lafford ◽  
...  

2011 ◽  
Vol 10 (03) ◽  
pp. 433-440 ◽  
Author(s):  
A. A. DAKHEL ◽  
F. Z. HENARI

Nanoparticles of silver-embedded indium oxide thin films have been prepared on glass and silicon substrates. Silver concentration were 3 wt.% and 5 wt.% as measured by X-ray fluorescence. X-ray diffraction reveals that indium oxide of these samples remains amorphous even after pre-annealing at 400°C. The optical absorption of the samples manifests the surface plasmon resonance (SPR) phenomena, which varies with Ag content. The Ag nanoparticles radius was estimated with Mie classical theory by using the SPR data analysis. The nonlinear optical properties of films on glass substrate were investigated using z-scan technique. Under cw excitation the films exhibit large reverse saturation absorption and negative nonlinearities. The real and imaginary parts of third order susceptibility of the samples were measured and the imaginary part which arise from the change in absorption is found to be dominant.


Sign in / Sign up

Export Citation Format

Share Document