Interface States in 4H- and 6H-SiC MOS Capacitors: A Comparative Study between Conductance Spectroscopy and Thermal Dielectric Relaxation Current Technique
The purpose of this work is to compare the density of shallow interface states (Dit) at the interface of SiO2/SiC MOS capacitors as deducted by the conductance spectroscopy (CS) and thermally dielectric relaxation current (TDRC) techniques. Both capacitors of 4H- and 6H-SiC (n-type) are investigated, and both ordinary dry oxidation and an improved industrial procedure have been employed. The two techniques are found to give rather good agreement for interface states located ≥0.3 eV below the conduction band edge (Ec) while for more shallow states vastly different distributions of Dit are obtained. Different reasons for these contradictory results are discussed, such as strong temperature and energy dependence of the capture cross section of the shallow interface states.