Genetic Alloy Design of Ultra High Strength Stainless Steels: From Thermodynamics to Quantum Mechanics

2010 ◽  
Vol 638-642 ◽  
pp. 3473-3478
Author(s):  
Pedro E.J. Rivera-Díaz-del-Castillo ◽  
Wei Xu ◽  
Sybrand van der Zwaag

The design of novel ultra high strength steels for aerospace applications is subjected to stringent requirements to ensure their performance. Such requirements include the ability to withstand high loads in corrosive environments subjected to temperature variations and cyclic loading. Achieving the desired performance demands microstructural control at various scales; e.g. fine lath martensite is desired in combination with nanoprecipitate networks at specified volume fractions, and controlled concentrations of alloying elements to prevent alloy embrittlement. The design for a specified microstructure cannot be separated from the processing route required for its fabrication. Alloys displaying exceptional properties are subjected to complex interactions between microstructure and processing requirements, which can be described in terms of evolutionary principles. The present work shows how genetic alloy design principles have been utilised for designing stainless steels displaying strength exceeding that of commercial counterparts. Such designed alloys become feasible for fabrication by tailoring their microstructure employing thermodynamic and kinetic principles, while fracture toughness properties can be controlled via performing quantum mechanical cohesion energy computations.

2014 ◽  
Vol 775-776 ◽  
pp. 136-140 ◽  
Author(s):  
Renato Araujo Barros ◽  
Antonio Jorge Abdalla ◽  
Humberto Lopes Rodrigues ◽  
Marcelo dos Santos Pereira

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainític structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.


2014 ◽  
Vol 783-786 ◽  
pp. 1009-1014 ◽  
Author(s):  
Mahesh C. Somani ◽  
David A. Porter ◽  
L. Pentti Karjalainen ◽  
Pasi Suikkanen ◽  
R.D.K. Misra

Based on the recent concept of quenching and partitioning (Q&P), a novel TMR-DQP (thermomechanical rolling followed by direct quenching and partitioning) processing route has been established for the development of ultra-high strength structural steels with yield strengths ≈1100 MPa combined with good uniform and total elongations and impact toughness. Suitable compositions were designed based on high silicon and/or aluminium contents with or without small additions of Nb, Mo or Ni. The DQP parameters were established with the aid of physical simulation on a Gleeble simulator. Finally, the TMR-DQP processing route was designed for trials on a laboratory rolling mill. Metallographic studies showed that the desired martensite-austenite microstructures were achieved thus providing the targeted mechanical properties. The advantage of strained austenite in refining the martensite packets/blocks was clearly evident. No adverse effect of prolonged partitioning simulating the coiling stage has been noticed suggesting new possibilities for strip and plate products. Promising results in respect of microstructures and mechanical properties indicate that there are possibilities for developing tough ductile structural steels through the TMR-DQP route.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


Author(s):  
Tarun Nanda ◽  
Vishal Singh ◽  
Virender Singh ◽  
Arnab Chakraborty ◽  
Sandeep Sharma

The automobile industry is presently focusing on processing of advanced steels with superior strength–ductility combination and lesser weight as compared to conventional high-strength steels. Advanced high-strength steels are a new class of materials to meet the need of high specific strength while maintaining the high formability required for processing, and that too at reasonably low cost. First and second generation of advanced high-strength steels suffered from some limitations. First generation had high strength but low formability while second generation possessed both strength and ductility but was not cost effective. Amongst the different types of advanced high-strength steels grades, dual-phase steels, transformation-induced plasticity steels, and complex phase steels are considered as very good options for being extended into third generation advanced high-strength steels. The present review presents the various processing routes for these grades developed and discussed by different authors. A novel processing route known as quenching and partitioning route is also discussed. The review also discusses the resulting microstructures and mechanical properties achieved under various processing conditions. Finally, the key findings with regards to further research required for the processing of advanced high-strength steels of third generation have been discussed.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 631 ◽  
Author(s):  
Hamid Bayat ◽  
Sayantan Sarkar ◽  
Bharath Anantharamaiah ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
...  

Increased passenger safety and emission control are two of the main driving forces in the automotive industry for the development of light weight constructions. For increased strength to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their material properties due to e.g., the manufacturing processes. In this work, a robust numerical model is developed in order to take the scatter into account in the prediction of the failure in manganese boron steel (22MnB5). To this end, the underlying material properties which determine the shapes of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski model is applied to determine the failure limits. By using a statistical approach, the material scatter is quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from simulations is verified experimentally. By generation of the so called forming limit bands (FLBs), the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC. In this way, the FLBs separate the whole region into safe, necking and failed zones.


2019 ◽  
Vol 25 (2) ◽  
pp. 101 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Jiří Vrtáček ◽  
Ludmila Kučerová ◽  
...  

<p class="AMSmaintext">Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO<sub>2</sub> emissions. Another important factor is to improve passenger safety. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these types of treatments is the isothermal holding step. For TRIP steels, the holding temperature lies in the field of bainitic transformation. These isothermal holds are economically demanding to perform in industrial conditions. Therefore new treatments without isothermal holds, which are possible to integrate directly into the production process, are searched. One way to produce high-strength sheet is the press-hardening technology. Physical simulation based on data from a real-world press-hardening process was tested on CMnSi TRIP steel. Mixed martensitic-bainitic structures with ferrite and retained austenite (RA) were obtained, having tensile strengths in excess of 1000 MPa.</p>


Sign in / Sign up

Export Citation Format

Share Document