Dielectric Properties of PMMA-SiO2 Hybrid Films

2010 ◽  
Vol 644 ◽  
pp. 25-28 ◽  
Author(s):  
M.D. Morales-Acosta ◽  
M.A. Quevedo-López ◽  
Husam N. Alshareef ◽  
B.E. Gnade ◽  
R. Ramírez-Bon

Organic-inorganic hybrid films were synthesized by a modified sol-gel process. PMMA-SiO2 films were prepared using methylmethacrylate (MMA), tetraethil-orthosilicate (TEOS) as silicon dioxide source, and 3-trimetoxi-silil-propil-methacrylate (TMSPM) as coupling agent. FTIR measurements were performed on the hybrid films to confirm the presence of PMMA-SiO2 bonding. In addition, metal-insulator-metal (MIM) devices were fabricated to study the dielectric constant of the films as function of frequency (1 KHz to 1 MHz). Electrical results show a weak trend of the dielectric constant of the hybrid films with MMA molar ratio. More importantly, the PMMA-SiO2 hybrid films showed a higher dielectric constant than SiO2 and PMMA layers, which is likely due to the presence of additional C-O-C bond.

1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


2008 ◽  
Vol 47-50 ◽  
pp. 973-976 ◽  
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Hong Zheng ◽  
Hai Tao Huang ◽  
...  

A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.


2018 ◽  
Vol 9 (1) ◽  
pp. 304 ◽  
Author(s):  
Xuehua Zhang ◽  
Chu Xue ◽  
Wei Zhang ◽  
Liang Yu ◽  
Qian Wang ◽  
...  

Author(s):  
Hiroyo Segawa ◽  
Junichi Tabuchi ◽  
Kazuaki Yoshida ◽  
Toshiaki Kondo ◽  
Shigeki Matsuo ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 794-796
Author(s):  
Xiao Hui Wang ◽  
Xiao Ping Liang ◽  
Shao Bo Xin

Silicon dioxide gel fibers were prepared by hydrolysis reaction of tetraethyl orthosilicate (TEOS). TEOS was used as basic materials, anhydrous ethanol (EtOH) as solvent and hydrochloric acid (HCl) as the catalyst. The best proportion of the chosen materials (TEOS, EtOH, H2O and HCl) was 1:1:1.5:0.03(molar ratio).Gel fibers were investigated by thermogravimetry (TG). Silicon dioxide fibers were obtained by treating the gel fibers at different temperatures. The calcined fibers were characterized by scanning electron microscopy (SEM). The optimal sintering schedule was obtained. Silicon dioxide fiber dried at 200°C for 1 hour then calcined at 800°C for 3 hours was the best.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.


1992 ◽  
Vol 5 (2) ◽  
pp. 393-396 ◽  
Author(s):  
Atsushi Morikawa ◽  
Hidehiro Yamaguchi ◽  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Sign in / Sign up

Export Citation Format

Share Document