Deposition of GaN Films on Freestanding CVD Thick Diamond Films

2010 ◽  
Vol 654-656 ◽  
pp. 1740-1743 ◽  
Author(s):  
Dong Zhang ◽  
Yi Zhen Bai ◽  
Fu Wen Qin ◽  
Ji Ming Bian

High quality GaN films are deposited on freestanding thick diamond films by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The characteristics of GaN films were investigated by x-ray diffraction analysis (XRD), reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The high quality GaN films with small surface roughness of 8.3 nm and high c-orientation are successfully achieved at the optimized nitriding time with the diamond substrate. These properties of GaN films with small surface smoothness and high c-orientation are well used as piezoelectric films for surface acoustic wave (SAW) devices.

2013 ◽  
Vol 475-476 ◽  
pp. 1299-1302
Author(s):  
Shan Lin Cui ◽  
Hong Gang ◽  
Zheng Nian Li

High-quality GaN films are deposited on diamond films using an electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) under the condition of the proper Trimethyl gallium (TMGa) flux. The influence of TMGa flux on the properties of GaN films is systematically investigated by x-ray diffraction analysis (XRD) and atomic force microscopy (AFM). The results show that the high quality GaN films with small surface roughness and high c-orientation are successfully achieved at the optimized flux. The most significant improvements in morphological and structural properties of GaN films are obtained by using a proper TMGa flux


2019 ◽  
Author(s):  
Xiejia

High quality GaN films have been successfully grown on multi-AlN/sapphire templates by metal organic chemical vapor deposition system. The Hall mobility and the carrier concentration of 720 cm2/Vs and 6.7x1016 cm-3 at 300K, respectively, along with low dislocation density of 4.1x109 cm-2 have been achieved. The X-ray rocking curve full-width at half-maximum were 160 and 290 arcsec for (0004) and (20-24) reflection planes also obtained, respectively. Besides that, the atomic force microscopy images showed smooth surface morphology and a higher intensity near the band edge was also observed by photoluminescence measurement result.


2013 ◽  
Vol 662 ◽  
pp. 55-58
Author(s):  
Cheng Jiu Ma ◽  
Li Zhao ◽  
Tong Wei Yu ◽  
Xin Sun

Preferred orientation GaN films are deposited on freestanding thick diamond films by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N2 are applied as precursors and different N2 flux is used to achieve high quality GaN films. The influence of N2 flux on the properties of GaN films is systematically investigated by x-ray diffraction analysis (XRD), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and Hall Effect Measurement (HL). The results show that the high quality GaN films deposited at the proper N2 flux display a fine structural and electrical property and the Ga/N atomic ratio plays an important role in the electrical property of GaN films.


2012 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Didik Aryanto ◽  
Zulkafli Othaman ◽  
Abd. Khamim Ismail

Self-assembled In0.5Ga0.5As quantum dots (QDs) were grown using metal-organic chemical vapor deposition (MOCVD) on GaAs (100) substrate with different number of stacking QDs layers. Surface study using atomic force microscopy (AFM) shows that surface morphology of the self-assembled QDs change with different number of stacking QDs layers caused by the previous QDs layers and the thickness of the GaAs spacer layers. PL measurement shows variation in the PL spectra as a function of number of stacking layers of In0.5Ga0.5As QDs. The PL peak positions blue-shifted from 1225 nm to 1095 nm and dramatically increase in intensity with increasing number of stacking QDs layers.


Author(s):  
D.V. Lebedev ◽  
N.A. Kalyuzhnyy ◽  
S.A. Mintairov ◽  
K.G. Belyaev ◽  
M.V. Rakhlin ◽  
...  

AbstractWe investigated structural and emission properties of self-organized InP/GaInP quantum dots (QD) grown by metal organic chemical vapor deposition using an amount of deposited In from 7 to 2 monolayers (ML). In the uncapped samples, using atomic force microscopy (AFM), we observed lateral sizes of 100–200 nm, together with a bimodal height distribution having maxima at ∼5 and ∼15 nm, which we denoted as QDs of type A and B, respectively; and reduction of the density of the type-B dots from 4.4 to 1.6 μm^–2. The reduction of the density of B-type dots were observed also using transmission electron microscopy of the capped samples. Using single dot low-temperature photoluminescence (PL) spectroscopy we demonstrated effects of Wigner localization for the electrons accumulated in these dots.


2013 ◽  
Vol 475-476 ◽  
pp. 1303-1306
Author(s):  
Chang Qing Liu ◽  
Peng Qiu ◽  
Zhong Fei Gao ◽  
Bao Zhong Gan

Highly-quality GaN films were deposited on diamond substrate using an electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition system (ECR-PEMOCVD) at the proper temperature. The source of gallium is Trimethyl gallium (TMGa) and N2, and the influence of temperature on the properties of GaN films was investigated systematically by X-ray diffraction analysis (XRD), atomic force microscopy (AFM), room temperature photoluminescence (PL), respectively. The dense and uniformed GaN films with highly c-axis preferred orientation were successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 °C.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 339 ◽  
Author(s):  
Gene Siegel ◽  
Gordon Gryzbowcki ◽  
Albert Hilton ◽  
Christopher Muratore ◽  
Michael Snure

In this paper we demonstrate a metal organic chemical vapor deposition (MOCVD) process for growth of few layer hBN films on Ni(111) on sapphire substrates using triethylborane (TEB) and ammonia (NH3). Ni(111) was selected as a substrate due to its symmetry and close lattice matching to hBN. Using atomic force microscopy (AFM) we find hBN is well aligned to the Ni below with in plane alignment between the hBN zig zag edge and the <110> of Ni. We further investigate the growth process exploring interaction between precursors and the Ni(111) substrate. Under TEB pre-exposure Ni-B and graphitic compounds form which disrupts the formation of layered phase pure hBN; while NH3 pre-exposure results in high quality films. Tunnel transport of films was investigated by conductive-probe AFM demonstrating films to be highly resistive. These findings improve our understanding of the chemistry and mechanisms involved in hBN growth on metal surfaces by MOCVD.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1185
Author(s):  
Shuaijie Wang ◽  
Fuwen Qin ◽  
Yizhen Bai ◽  
Dong Zhang ◽  
Jingdan Zhang

The progress of InN semiconductors is still in its infancy compared to GaN-based devices and materials. Herein, InN thin films were grown on self-standing diamond substrates using low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) with inert N2 used as a nitrogen source. The thermal conductivity of diamond substrates makes the as-grown InN films especially attractive for various optoelectronic applications. Structural and electrical properties which depend on deposition temperature were systematically investigated by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurement. The results indicated that the quality and properties of InN films were significantly influenced by the deposition temperature, and InN films with highly c-axis preferential orientation and surface morphology were obtained at optimized temperatures of 400 °C. Moreover, their electrical properties with deposition temperature were studied, and their tendency was correlated with the dependence on micro- structure and morphology.


1997 ◽  
Vol 482 ◽  
Author(s):  
Yuval Golan ◽  
Paul Fini ◽  
Steven P. Denbaars ◽  
James S. Speck

AbstractWe have used atomic force microscopy (AFM) to study the effect of common substrate surface treatments for the metal-organic chemical vapor deposition (MOCVD) of GaN on sapphire. It appears that contaminants play a major role in the surface chemistry and strongly influence the morphology of the treated surfaces. In order to investigate the role of these contaminants, we have introduced the concept of “controlled contamination” (CC), namely, exposure of the sapphire surfaces to controlled amounts of potential contaminants in-situ and investigation of the resulting sapphire morphology. The results showed that sapphire, considered to be a very stable oxide surface, is clearly reactive in the GaN MOCVD chemical environment at the high temperatures (HT) employed, allowing us to use CC for obtaining sapphire substrates with controlled roughness. Nevertheless, epitaxial growth using the two-step GaN MOCVD process appears to be very robust and practically insensitive to the (submicronscale) substrate morphology.


2014 ◽  
Vol 896 ◽  
pp. 215-218
Author(s):  
Didik Aryanto ◽  
Zulkafli Othaman ◽  
A. Khamim Ismail

Stacked self-assembled In0.5Ga0.5As/GaAs quantum dots (QDs) were grown using metal organic chemical vapor deposition (MOCVD). Atomic force microscopy (AFM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XDR) show the effects of stacking on morphology and structure of QDs. Strains due to the buried QDs affect the shape and alignment of the successive layers. Capping of these QDs also determine the quality of the top most QDs structure.


Sign in / Sign up

Export Citation Format

Share Document