scholarly journals Impact of the Deposition Temperature on the Structural and Electrical Properties of InN Films Grown on Self-Standing Diamond Substrates by Low-Temperature ECR-MOCVD

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1185
Author(s):  
Shuaijie Wang ◽  
Fuwen Qin ◽  
Yizhen Bai ◽  
Dong Zhang ◽  
Jingdan Zhang

The progress of InN semiconductors is still in its infancy compared to GaN-based devices and materials. Herein, InN thin films were grown on self-standing diamond substrates using low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) with inert N2 used as a nitrogen source. The thermal conductivity of diamond substrates makes the as-grown InN films especially attractive for various optoelectronic applications. Structural and electrical properties which depend on deposition temperature were systematically investigated by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurement. The results indicated that the quality and properties of InN films were significantly influenced by the deposition temperature, and InN films with highly c-axis preferential orientation and surface morphology were obtained at optimized temperatures of 400 °C. Moreover, their electrical properties with deposition temperature were studied, and their tendency was correlated with the dependence on micro- structure and morphology.

2013 ◽  
Vol 662 ◽  
pp. 55-58
Author(s):  
Cheng Jiu Ma ◽  
Li Zhao ◽  
Tong Wei Yu ◽  
Xin Sun

Preferred orientation GaN films are deposited on freestanding thick diamond films by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N2 are applied as precursors and different N2 flux is used to achieve high quality GaN films. The influence of N2 flux on the properties of GaN films is systematically investigated by x-ray diffraction analysis (XRD), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and Hall Effect Measurement (HL). The results show that the high quality GaN films deposited at the proper N2 flux display a fine structural and electrical property and the Ga/N atomic ratio plays an important role in the electrical property of GaN films.


2010 ◽  
Vol 654-656 ◽  
pp. 1740-1743 ◽  
Author(s):  
Dong Zhang ◽  
Yi Zhen Bai ◽  
Fu Wen Qin ◽  
Ji Ming Bian

High quality GaN films are deposited on freestanding thick diamond films by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The characteristics of GaN films were investigated by x-ray diffraction analysis (XRD), reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The high quality GaN films with small surface roughness of 8.3 nm and high c-orientation are successfully achieved at the optimized nitriding time with the diamond substrate. These properties of GaN films with small surface smoothness and high c-orientation are well used as piezoelectric films for surface acoustic wave (SAW) devices.


2007 ◽  
Vol 515 (5) ◽  
pp. 2921-2925 ◽  
Author(s):  
Chunyu Wang ◽  
Volker Cimalla ◽  
Genady Cherkashinin ◽  
Henry Romanus ◽  
Majdeddin Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document