Relationship between Dopant 5-Sulfosalicylic Acid and Conductivity of Ammonium Persulfate Oxidized Polypyrrole

2010 ◽  
Vol 663-665 ◽  
pp. 674-677
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai ◽  
Fu Fang Zhou ◽  
Chun Xu Pan

The effects of dopant 5-sulfosalicylic acid on the conductivity of polypyrrole were investigated. Being nonhygroscopic, ammonium persulfate was used as the oxidant. Under the condition of fixed molar ratio of oxidant-to-monomer (0.375:1.00), a dozen of polypyrrole samples were made from chemical polymerizing the monomer pyrrole in aqueous medium by varying the dopant-to-monomer molar ratio. It was found that the dopant affected the conductivity and particle size of the synthesized polypyrrole. A maximum value for electrical conductivity of 5575 S/m was achieved when the molar ratio of dopant: oxidant: monomer is 2.25:0.375:1.00.

2010 ◽  
Vol 663-665 ◽  
pp. 682-685
Author(s):  
Yuan Ming Huang ◽  
Fu Fang Zhou ◽  
Qing Lan Ma ◽  
Ming Meng ◽  
Chun Xu Pan

The effects of dopant 5-sulfosalicylic acid on the conductivity of polypyrrole were investigated. Under the condition of fixed molar ratio of oxidant-to-monomer (0.75: 1.00), a dozen of polypyrrole samples were made from chemical polymerizing the monomer pyrrole in aqueous medium by varying the dopant-to-monomer molar ratio. It was found that the dopant affected the conductivity and particle size of the synthesized polypyrrole. A maximum value for electrical conductivity of 5575 S/m was achieved when the molar ratio of dopant: oxidant: monomer is 2.25:0.75:1.00.


2010 ◽  
Vol 644 ◽  
pp. 85-90 ◽  
Author(s):  
Rebeca G. Melendez ◽  
Karla J. Moreno ◽  
Ivana Moggio ◽  
Eduardo Arias ◽  
Arturo Ponce ◽  
...  

In this paper, we studied the influence of the silver nanoparticles size on the electrical conductivity of PEDOT:PSS in Ag(PEDOT:PSS) films. The silver nanoparticles were synthesized in presence of PEDOT:PSS by varying the molar ratio between AgNO3 and the reducing agent (NaBH4). Both the particle size determined by TEM and the plasmon band obtained by UV-Vis spectroscopy were found to be strongly dependent on the reducing agent concentration. The electrical conductivity increases inversely with the concentration of reducing agent from 5.24 x 10-4 up to 1.63 S/cm; three orders of magnitude higher than pristine PEDOT:PSS.


2016 ◽  
Vol 869 ◽  
pp. 391-395 ◽  
Author(s):  
Ricardo Hidalgo Santim ◽  
Hermes Adolfo de Aquino ◽  
José Antonio Malmonge

Polypyrrole nanoparticles (PPy) were synthesized by the chemical oxidative microemulsion of pyrrole (Py) monomer using ammonium persulfate (APS) as an oxidant agent and sodium dodecylsulfate (SDS) as a surfactant at 28°C and 0°C. Different Py:APS:SDS molar ratios were used, and the properties of the resulting material were examined by four-probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-vis-Nir), and Fourier-transform infrared (FTIR) spectroscopies as well as field-emission scanning electron microscopy (FESEM). UV-vis-Nir and FTIR spectra show the formation of a polaron band owing to the doping of PPy by SDS. The electrical conductivity and morphology of PPy nanoparticles depend on the synthesis conditions. Electrical conductivity of ~95.3×10-3 S/cm was achieved for PPy synthesized at 0°C. For the same Py:APS:SDS molar ratio, the nanoparticle shape changed from cylindrical to spherical upon simply lowering the synthesis temperature.


2021 ◽  
Vol 73 (1) ◽  
pp. 160-168
Author(s):  
T.K. Jumadilov ◽  
◽  
B. Totkhuskyzy ◽  
L.K. Yskak ◽  
T. Askar ◽  
...  

The remote interaction between a weak polyacrylic acid polyelectrolyte (gpac) and a weak polyethyleneimine polybase (gpei) is studied as a function of time at their different molar ratios and states in an aqueous medium. To predict the possibility of activation of the studied hydrogels, electrochemical properties were studied by conductometry and pH metry. During pH measurement, it was found that 24 hours of pH have the lowest values, indicating a high content of H+ ions in the aqueous medium. The dependence of the specific electrical conductivity, the maximum value at the ratio of 3:3 (PAC:PEI) and it coincides with the result of pH from the ratio of components. The obtained results indicate that significant changes in the electrochemical and conformational values of the initial macromolecules in the interpolymer system occur in this interpolymer system. Thus, studies have shown on the presence of a remote interaction between hydrogels and their mutual activation. With an increase in the content of one of the hydrogels in the solution, a significant increase in the swelling of hydrogels is observed in proportion to the concentration of the second component, which indicates their mutual activation.


2021 ◽  
Vol 1022 ◽  
pp. 203-211
Author(s):  
I.S. Dolgin ◽  
Petr P. Purygin ◽  
Y.P. Zarubin ◽  
A.V. Samorodov

The paper describes the synthesis of three new copolymers based on styrene and α-methylstyrene derivatives by radical emulsion copolymerization in an aqueous medium in the presence of an ammonium persulfate initiator and potassium stearate emulsifier. In early study, it was found that copolymers based on methoxy derivatives of styrene have the advanced dielectric properties, as compared to polystyrene and a copolymer of styrene and α-methylstyrene. In addition, the latest scientific literature provides data on the biological activity of styrene copolymers. Thus, the synthesis and study of the properties of new copolymers based on styrene and α-methylstyrene creates a prospect for establishing materials with a unique set of properties differing from their previously studied analogues. The structure of synthesized copolymers is confirmed by IR spectroscopy. Along with this, the paper provides the curves of thermogravimetric analysis, data on dielectric constant and tangent of a dielectric loss angle. A hemolytic effect of copolymers is determined, which indicates biocompatibility and further research perspectives towards their suitability for medical use. A copolymer of sodium 4-styrenesulfonate and α-methylstyrene (the molar ratio of starting monomers is 7:3) is soluble in an aqueous medium, which makes it of higher priority in terms of further study into biological activity.


2010 ◽  
Vol 663-665 ◽  
pp. 666-669
Author(s):  
Yuan Ming Huang ◽  
Bao Gai Zhai ◽  
Qing Lan Ma ◽  
Xiao Yan Kong

A series of polypyrrole samples were synthesized by oxidizing pyrrole in the aqueous medium of ferric chloride, and the relation between oxidant/monomer ratio and the electrical conductivity of polypyrrole was studied by increasing the ratio from 0.25:1 to 2.5:1. Our results showed that the conductivity of polypyrrole was dependent on the mole ratio of the oxidant to pyrrole, and a maximum value for electrical conductivity of 1500 S/m was achieved for a ratio of 0.75:1.


2021 ◽  
Vol 10 (1) ◽  
pp. 157-168
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Jun Ji ◽  
Dongsheng He ◽  
...  

Abstract The feasibility of industrial waste fly ash as an alternative fluxing agent for silica in carbothermal reduction of medium-low-grade phosphate ore was studied in this paper. With a series of single-factor experiments, the reduction rate of phosphate rock under different reaction temperature, reaction time, particle size, carbon excess coefficient, and silicon–calcium molar ratio was investigated with silica and fly ash as fluxing agents. Higher reduction rates were obtained with fly ash fluxing instead of silica. The optimal conditions were derived as: reaction temperature 1,300°C, reaction time 75 min, particle size 48–75 µm, carbon excess coefficient 1.2, and silicon–calcium molar ratio 1.2. The optimized process condition was verified with other two different phosphate rocks and it was proved universally. The apparent kinetics analyses demonstrated that the activation energy of fly ash fluxing is reduced by 31.57 kJ/mol as compared with that of silica. The mechanism of better fluxing effect by fly ash may be ascribed to the fact that the products formed within fly ash increase the amount of liquid phase in the reaction system and promote reduction reaction. Preliminary feasibility about the recycling of industrial waste fly ash in thermal phosphoric acid industry was elucidated in the paper.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2015 ◽  
Vol 659 ◽  
pp. 394-398 ◽  
Author(s):  
Nutthaphon Liawthanyarat ◽  
Sarawut Rimdusit

Polybenzoxazine nanocomposites filled with three different sizes of silica nanoparticles are investigated for their mechanical and thermal properties. In this research, silica nanoparticles with primary particle sizes of 7, 14 and 40 nm were incorporated in polybenzoxazine matrix at a fixed content of 3% by weight. From the experimental results, the storage modulus of the polybenzoxazine nanocomposite was found to systematically increase with decreasing the particle sizes of nanosilica suggesting better reinforcement of the smaller particles. Glass transition temperature was found to slightly increase with the addition of the silica nanoparticles. The uniformity of the composite samples were also evaluated by thermogravimetric analysis to show good dispersion of the silica nanoparticles in the composite samples as a result of high processability of the benzoxazine resin used i.e. low A-stage viscosity with good wetting behaviors. Degradation temperature at 5% weight loss (Td,5) of polybenzoxazine nanocomposites filled with different particle sizes of silica nanoparticles was found to increase from the value of 325 °C of the neat polybenzoxazine to the maximum value of about 340 °C with an addition of the nanosilica of the smallest particle size used. Finally, the smaller nanosilica particle size was also found to show more pronounced effect on Td,5enhancement of the composite samples as a result of greater barrier effect from larger surface area of the smaller particles.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


Sign in / Sign up

Export Citation Format

Share Document