Effect of Cold Rolling on Structure and Mechanical Properties of Copper Subjected to Different Numbers of Passes of ECAP

2010 ◽  
Vol 667-669 ◽  
pp. 295-300 ◽  
Author(s):  
N.D. Stepanov ◽  
A.V. Kuznetsov ◽  
Gennady A. Salishchev ◽  
Georgy I. Raab ◽  
Ruslan Valiev

Commercial purity copper was subjected to ECAP and subsequent cold rolling. Structure and mechanical properties were studied using EBSD analysis, TEM and tensile tests. Effect of ECAP number passes on grain size and fraction of high angle boundaries after cold rolling was investigated. Rolling results in grain refinement and HABs fraction increase the more ECAP number passes. UTS increases significantly after rolling. Increase of strength is accompanied by loss of plasticity. Evolution of microstructure and mechanical properties is discussed.

2005 ◽  
Vol 488-489 ◽  
pp. 275-278 ◽  
Author(s):  
Rong Shi Chen ◽  
Jean Jacques Blandin ◽  
Michel Suéry ◽  
En Hou Han

Mechanical properties and microstructure of extruded AZ91(-Ca) alloys have been studied in this paper. The results showed that Ca has no significant effect on reducing grain size of the extruded AZ91 alloy. The ambient temperature tensile tests showed that the ultimate and yield strength of extruded AZ91 alloy decreased by addition of Ca. At elevated temperature, Ca addition improves the yield strength of both AZ91 alloy. The variations in microstructure and mechanical properties of the AZ91 alloy are also discussed in terms of the effects of Ca on grain refinement and formation of constituent phases.


2012 ◽  
Vol 724 ◽  
pp. 476-480
Author(s):  
Kuk Hyun Song ◽  
Han Sol Kim ◽  
Won Yong Kim

This study evaluated the microstructure and mechanical properties enhancement of cross roll rolled Ni-10Cr alloy, comparing with conventional rolled material. Cold rolling was carried out to 90% thickness reduction and subsequently annealed at 700 °C for 30 min to obtain the fully recrystallized microstructure. For annealed materials after rolling, to investigate the grain boundary characteristic distributions, electron back-scattering diffraction technique was introduced. Application of cross roll rolling on Ni-10Cr alloy contributed to the notable grain refinement, consequently, average grain size was refined from 135 μm in initial material to 4.2 μm in cross roll rolled material. These refined grain size led to an enhanced mechanical properties such as yield and tensile strengths. Furthermore, <111>//ND texture in CRR material was well developed than that of CR material, which contributed to the mechanical properties and formability enhancement.


2007 ◽  
Vol 539-543 ◽  
pp. 2198-2203 ◽  
Author(s):  
A. Krishnaiah ◽  
Chakkingal Uday ◽  
P. Venugopal

Groove pressing (GP) is a severe plastic deformation technique for producing ultra fine grain sized microstructures in metals and alloys. In the present study, groove pressing and a two-step process of groove pressing followed by cold rolling was used to investigate the potential of these processes to produce ultra fine grained copper with significantly enhanced strength. Mechanical and microstructure properties were evaluated after groove pressing and after groove pressing followed by cold rolling. The advantages conferred by groove pressing prior to cold rolling on producing copper with enhanced properties has been investigated.


2006 ◽  
Vol 503-504 ◽  
pp. 889-894 ◽  
Author(s):  
T.T. Lamark ◽  
Ralph Jörg Hellmig ◽  
Yuri Estrin

Typically, magnesium alloys with conventional grain size exhibit microplastic behaviour already at low stresses. This behaviour restricts the technological utilization of these materials. The aim of this study was to investigate whether ECAP can be applied to enlarge the elastic range of AS21X. Cyclic tensile tests at room temperature were carried out to examine the effect of the ECAP induced grain refinement on the elastic properties. The results obtained are compared with the cyclic behaviour of conventional, coarse-grained AS21X. The differences in mechanical properties between the two conditions are discussed.


2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


Sign in / Sign up

Export Citation Format

Share Document