Mechanical Properties of Different Coppers Processed by Equal Channel Angular Pressing

2010 ◽  
Vol 667-669 ◽  
pp. 713-718 ◽  
Author(s):  
Oscar Fabián Higuera ◽  
Jairo Alberto Muñoz ◽  
Jose María Cabrera

Mechanical properties of two Cu alloys (electrolytic and fire refined) severely deformed by equal channel angular pressing (ECAP) process were investigated. They were treated with a annealing heat treatment to 600°C during 30 minutes and then they were extruded in a Φ=90º ECAP die at room temperature following route Bc. Heavy deformation was introduced in the samples after a considerable number of ECAP passes from 1, 2, 3, 4, 5, 6, 7, 8, to 16. The principal changes were introduced in the first pass by ECAP but a gradual increment in the mechanical properties was observed for the consecutive ECAP passes. Also, the electrical conductivity decreased with increasing numbers of ECAP passes.

2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


2012 ◽  
Vol 560-561 ◽  
pp. 344-348 ◽  
Author(s):  
Wei Wei ◽  
Kun Xia Wei ◽  
Igor V. Alexandrov ◽  
Qing Bo Du ◽  
Jing Hu

The effect of aging treatment on mechanical properties and electrical conductivity of Cu-5.7%Cr in situ composite produced by equal channel angular pressing (ECAP) was investigated here. The rotation and spreading of Cr particles was observed in Cu-5.7%Cr alloy during the ECAP, resulting in long thin in situ filaments. The equiaxed grains of the Cu phase with an average size of 200 nm were developed after eight passes of ECAP. When aging at 400~450 °C for 1 h, Cu-5.7%Cr composite after ECAP shows the maximum microhardness, and the electrical conductivity is larger than 70% of IACS. At 400 °C, the peak aging time appears for 0.5~2 h, dependent on the pre-strain for all ECAP samples. With the increase of ECAP passes, the enhancement of tensile strength due to the aging treatment declines, and even shows negative after eight passes of ECAP. The combination of ECAP and aging treatment would be a promising process to balance mechanical properties and electrical conductivity of Cu-5.7%Cr composite.


ROTASI ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 41
Author(s):  
Rusnaldy Rusnaldy ◽  
Norman Iskandar ◽  
Muhammad Khairul Rais ◽  
Wisnu Tri Erlangga

In current study, Equal Channel Angular Pressing (ECAP) process was applied to pure aluminium rod. The effect of the number of passes on hardness and electrical conductivity ECAP samples was investigated. The dimensions of ECAP die for 12 mmm diameter workpieces are designed with intersect angle of 120o. The experiments were carried out by using samples cut from an ingot and a rod and machined to a size of 12 mm in diameter and 50 mm in length. The workpiece was pressed into the ECAP die up to 7 passes at room temperature.After deformation, all samples were subjected to a hardness test, an electrical conductivity test and for optical microscope study. The hardness measurement of the ECAP samples suggested that enhanced hardness would be obtained by repeating ECAP process.Increasing the electrical conductivity of the ECAP samples indicatesthat there is no dislocation formation due to increasing plastic deformation in ECAP process


Author(s):  
Seyed Mahmoud Ghalehbandi ◽  
Alireza Fallahi Arezoodar ◽  
Hossein Hosseini-Toudeshky

Effect of aging treatment on mechanical properties of an age-hardenable aluminum alloy after equal channel angular pressing at room temperature has been investigated using hardness, stress–strain behavior and surface fractography. Aluminum alloy 7075 was pressed after solution treatment. Yield stress, ultimate stress and hardness of pressed samples have increased significantly compared with those of coarse grain, but the elongation to failure has decreased. Also the pressed specimens were subjected to aging treatment at room temperature and temperatures of 80 °C, 100 °C, 120 °C and 140 °C to obtain the optimized strength and ductility. The results indicated that post–equal channel angular pressing aging at 80 °C has resulted in the maximum strength, and natural aging has resulted in good ductility and acceptable strength. It confirmed the fact that there is a potential in obtaining high strength and good ductility in age-hardenable alloys employing severe plastic deformation and subsequent aging.


2005 ◽  
Vol 475-479 ◽  
pp. 545-548 ◽  
Author(s):  
Hyo Tae Jeong ◽  
Woo Jin Kim

Microstructure and texture evolution in the AZ31 Mg alloy subject to equal channel angular pressing (ECAP) have been investigated and correlated with the mechanical properties. When AZ31 Mg alloy was ECAPed up to 8 passes following the route Bc, grain refinement occurred effectively. Texture was also changed during ECAP. The original fiber texture of the extruded AZ31 Mg alloy changed to a new texture component of ] 1 3 2 5 )[ 1 1 01 ( , and the texture of ] 1 3 2 5 )[ 1 1 01 ( orientation was rotated to ] 0 2 5 7 )[ 6 4 13 ( orientation after 6-pass ECAP process. The variation of the strength with the pass number was explained by the texture and grain size. The strength data of AZ31 Mg alloys followed the standard Hall-Petch relationship when the similar texture was retained during the ECAP process. Otherwise the effect of texture on strength was dominant over the strengthening due to grain refinement.


2012 ◽  
Vol 585 ◽  
pp. 392-396 ◽  
Author(s):  
Ankit Sahai ◽  
Rahul Swarup Sharma ◽  
K. Hans Raj ◽  
Narinder Kumar Gupta

The severe plastic deformation (SPD) is an effective approach for producing bulk nanostructured materials. The Equal Channel Angular Pressing (ECAP) is the most efficient SPD solution for achieving ultra-fined grained (UFG) material as billet undergoes severe and large deformation. The process parameters of ECAP (Channel Angle, angle of curvature, friction, number of passes, etc) influences major impact on the properties. In present work, the ECAP process is performed by pressing a specimen through a die consisting of two intersecting channels meeting at an angle φ and outer corner meeting at an angle ψ. Experiments with a circular specimen of Al6061 were conducted to investigate the changes in mechanical properties upto 2 passes. 3-D finite element simulations were also performed using metal forming software FORGE to study the evolution of strain in the specimen during the ECAP process. Simulation results were investigated by comparing them with experimental measured data in terms of load variations. The present work clearly shows that ECAP caused accentuated increase in Al6061 hardness and tensile strength during multi-pass processing. This study is beneficial in developing high quality, high strength products in manufacturing industry on account of its ability to change microstructure of materials.


2021 ◽  
Author(s):  
Serkan Öğüt ◽  
Hasan Kaya ◽  
Aykut Kentli ◽  
Mehmet UÇAR

Abstract Equal channel angular pressing (ECAP), expansion equal channel angular pressing (Exp.-ECAP) and hybrid equal channel angular pressing (HECAP) processes were applied to pure copper specimens within this study. Before the ECAP and HECAP processes, an Exp.-ECAP mold with optimum geometric parameters was produced to be used in these processes. The samples, on which ECAP, Exp.-ECAP and HECAP processes were applied, were subjected to microstructure analysis and mechanical tests, and the effects of these processes were examined. The results obtained showed that the Exp.-ECAP process gave better results in grain refinement and mechanical properties, and the Exp.-ECAP passes applied after the ECAP process within the scope of the HECAP process provided a more homogeneous distribution for grain size and hardness.


Sign in / Sign up

Export Citation Format

Share Document