An Experimental Study of High Voltage SiC PiN Diode Modules Designed for 6.5 KV / 1 KA

2011 ◽  
Vol 679-680 ◽  
pp. 531-534 ◽  
Author(s):  
Dethard Peters ◽  
Bernd Thomas ◽  
T. Duetemeyer ◽  
T. Hunger ◽  
R. Sommer

The paper describes first results of 6.5 kV SiC PiN diode modules which are designed as neutral point valves for medium-voltage power inverters rated for 1000 A. The power module consists of 4 AlN DCB substrates soldered on an AlSiC base plate. Each DCB is equipped with 20 SiC PiN diodes operating in parallel. The total active area of all 80 diode chips is 5.68 cm². At the rated current of 2 x 500A the forward voltage drops from 4.1 V at room temperature to 3.9 V at an averaged junction temperature of 125°C. The switching experiments show a very low reverse recovery charge of about 30 µC only. The conduction loss is comparable to the corresponding 6.5 kV silicon diode whereas the dynamic loss is marginal with respect to the forward conduction loss if the switching frequency is held below 10 kHz.

2020 ◽  
Vol 1004 ◽  
pp. 1045-1053
Author(s):  
Heng Lee ◽  
Chun Kai Liu ◽  
Tao Chih Chang

This paper focuses on how to define and integrate the system level and power module level with optimal conditions in SiC and Si-IGBT. To investigate the above situation, we compare the performance of SiC and Si-IGBT in power module and system level at different ambient temperatures. At the same maximum junction temperature 150°C and ambient temperature at 25°C and 80°C, it found that SiC type electrical resistance, maximum endurable current, and voltage could be better than the IGBT type power module above 20%. On the other hand, the simulation of three-phase inverter at different switching frequency such as 10kHz, 15kHz, 20kHz, 30kHz and it had been observed that the power loss of SiC inverter are 78% less for 10kHz switching frequency; 82% less for switching frequency at 15kHz; 85% less for 20kHz of switching frequency; 89% less for switching frequency at 30kHz in the Si-IGBT three-phase SPWM inverter at ambient temperature 80°C.


2000 ◽  
Author(s):  
C. Edward Jih ◽  
K. Chen ◽  
T. Abraham ◽  
V. Siddapureddy ◽  
R. Poulson ◽  
...  

Abstract As the performance of the advanced electric systems increases, the packaging densities and power requirements will also increase. The reliability of these components will depend on the ability of the packaging system to transport heat away from the device. In this paper, a liquid-cooled coldplate for the inverter of hybrid electric vehicle was designed by using Computational Fluid Dynamics (CFD) technique. The main features of inverter packaging include power module, capacitors, busbar, gate driver, gate power supply, coldplate, sensors, & controllers. How to effectively dissipate the heat from power module to the coldplate is the focus of this study. The 3-phase full bridge power module consists of 12 IGBTs and 12 diodes. The silicon dies of IGBT or diode were soldered to the direct-bonded ceramic (DBC) A1N substrate, and to the copper base plate. Then the whole module was mounted mechanically onto an aluminum coldplate using thermal grease at the interface. The maximum allowable die junction temperature is 125°C. The commercial CFD code, FLUENT, was used here to study the flow field and heat transfer of the coldplate. In order to have confidence in the CFD prediction, the temperature distribution of an inverter assembly was obtained from FLUENT and then verified with the measurement from an infrared camera. Several design options on the coldplate, i.e., diameter & height of fins and shape & pattern of fin arrays, were examined. The effects of coolant flow rate and coolant type on the performance of coldplate were also studied. The overall thermal resistance and pressure drop of the coldplate were used to compare the efficiency of a series of coldplate design. Based on the CFD results, the effect of coldplate pin fins design on the thermal resistance is small. However, the pressure drop of the coldplate is quite sensitive to the design of pin fins. It is also noted that the fin height of coldplate can be reduced by 10% without degrading the performance of coldplate.


2005 ◽  
Vol 128 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Hua Ye ◽  
Harry Efstathiadis ◽  
Pradeep Haldar

Understanding the thermal performance of power modules under liquid nitrogen cooling is important for the design of cryogenic power electronic systems. When the power device is conducting electrical current, heat is generated due to Joule heating. The heat needs to be efficiently dissipated to the ambient in order to keep the temperature of the device within the allowable range; on the other hand, it would be advantageous to boost the current levels in the power devices to the highest possible level. Projecting the junction temperature of the power module during cryogenic operation is a crucial step in designing the system. In this paper, we present the thermal simulations of two different types of power metal-oxide semiconductor field effect transistor modules used to build a cryogenic inverter under liquid nitrogen pool cooling and discussed their implications on the design of the system.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


Sign in / Sign up

Export Citation Format

Share Document