Characterization and Properties of Organic Silicon Modified Vegetable Oil Fatliquor

2011 ◽  
Vol 694 ◽  
pp. 738-741 ◽  
Author(s):  
Bin Lü ◽  
Jian Zhong Ma ◽  
Dang Ge Gao ◽  
Jing Zhang

The vegetable oil fatliquor (VF) was prepared by rapeseed oil, 1, 2-ethylenediamine and acrylic acid. The synthesis of a silicon modified vegetable oil fatliquor (SVF) was carried out using VF and polyether silicon by stirring and ultrasonic treatment. VF and SVF were measured by Fourier Transform Infrared Spectroscopy (FT-IR), thermogravimetry(TGA) and Transmission electron microscopy (TEM) respectively. SVF was applied in leather fatliquoring process, compared with product XQ-F3. The results indicated that polycondensation between hydroxy of polyether silicon and carboxylic hydroxy of VF occurred, the performance of VF could be improved by polyether silicon. The emulsifying surface tension of SVF decreased to 17.0 N/m, compared with 18.2 N/m of VF.The application results showed that the physical mechanical properties of leather fatliquored by SVF was equivalent to the leather fatliquored by industrial XQ-F3 fatliquor.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Quanguo Li ◽  
Yanhua Shen ◽  
Taohai Li

In this work, CaWO4nanoparticles have been synthesized by microwave-assisted method at a low temperature of 120°C. The as-prepared powders were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). It is found that the reaction time played an important role in the morphology controlling and crystallinity level of CaWO4crystals. The effects of photoluminescent properties have a great relationship with crystallinity.


2011 ◽  
Vol 239-242 ◽  
pp. 2839-2842
Author(s):  
Hong Mei Mu ◽  
Peng Fei ◽  
Bi Tao Su ◽  
Zi Qiang Lei

A series of Fe3+-dopped polyaniline (Fe3+/PANI) nanomaterials with different morphologies and a higher conductivity were successfully synthesized using a simple and static interfacial polymerization by using FeCl3 as both oxidant catalyst and dopant. The effect of surfactants CTAB and SDS and the concentration of FeCl3 on the morphology and conductivity of Fe3+/PANI nanomaterial were investigated. The samples were characterized by Transmission Electron Microscopy (TEM), SDY-4 probes conductivity meter, X-ray Diffractometry (XRD), Energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy techniques. TEM’s results showed that their morphologies changed with the type of the surfactant and the concentration of FeCl3. Introducing surfactants CTAB and SDS into Fe3+/PANI remarkably improved the conductivity of the material. The conductivities of CTAB/Fe3+/PANI and SDS /Fe3+/PANI nanomaterials were respectively about 4.8×10-2 and 1.3×10-2 S/cm while the conductivity of Fe3+/PANI was found to be 1.5×10-4 S/cm. The different morphology and high conductivity may be ascribed to the mutual effects of the surfactant and oxidant.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Attiya Mohamedin ◽  
Sarah Shawqi Hamza ◽  
Abdel-Dayem Sherief

Biological method for silver nanoparticles synthesis has been developed to obtain cost effective, clean, nontoxic, and ecofriendly size-controlled nanoparticles. The objective of this study is extracellular biosynthesis of antimicrobial AgNPs using cell-free supernatant of a localStreptomycessp. strain SSHH-1E. Different medium composition and fermentation conditions were screened for maximal AgNPs biosynthesis using Plackett-Burman experimental design and the variables with statistically significant effects were selected to study their combined effects and to find out the optimum values using a Box-Behnken design. The synthesized AgNPs were characterized using UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Rapid biosynthesis of AgNPs was achieved by addition of 1 mM AgNO3solution to the cell-free supernatant. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy which confirmed the presence of AgNPs.Streptomycessp. SSHH-1E was identified asStreptomyces narbonensisSSHH-1E. Transmission electron microscopy study indicated that the shape of AgNPs is spherical and the size is ranging from 20 to 40 nm. Fourier transform infrared spectroscopy analysis provides evidence for proteins as possible reducing and capping agents. Furthermore, the biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic Gram-positive and Gram-negative bacteria and yeast. The maximum biosynthesis of AgNPs was achieved at initial pH of 8, peptone of 0.5 g, and inoculum age of 48 h. The statistical optimization resulted in a 4.5-fold increase in the production of AgNPs byStreptomyces narbonensisSSHH-1E.


2010 ◽  
Vol 76 (22) ◽  
pp. 7598-7607 ◽  
Author(s):  
A. Alvarez-Ordóñez ◽  
M. Prieto

ABSTRACT The effect of exposure to acid (pH 2.5), alkaline (pH 11.0), heat (55°C), and oxidative (40 mM H2O2) lethal conditions on the ultrastructure and global chemical composition of Salmonella enterica serovar Typhimurium CECT 443 cells was studied using transmission electron microscopy and Fourier transform infrared spectroscopy (FT-IR) combined with multivariate statistical methods (hierarchical cluster analysis and factor analysis). Infrared spectra exhibited marked differences in the five spectral regions for all conditions tested compared to those of nontreated control cells, which suggests the existence of a complex bacterial stress response in which modifications in a wide variety of cellular compounds are involved. The visible spectral changes observed in all of the spectral regions, together with ultrastructural changes observed by transmission electron microscopy and data obtained from membrane integrity tests, indicate the existence of membrane damage or alterations in membrane composition after heat, acid, alkaline, and oxidative treatments. Results obtained in this study indicate the potential of FT-IR spectroscopy to discriminate between intact and injured bacterial cells and between treatment technologies, and they show the adequacy of this technique to study the molecular aspects of bacterial stress response.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2082
Author(s):  
Katarzyna Antoniak-Jurak ◽  
Paweł Kowalik ◽  
Wiesław Próchniak ◽  
Robert Bicki ◽  
Grzegorz Słowik

The effect of La content and its incorporation route on physicochemical properties of ZnO/Zn(Al,La)2O4 or La2O3–ZnO/ZnAl2O4 mixed oxides with a spinel structure obtained from ZnAlLa Layered double hydroxides (LDHs) or ex-ZnAl LDH materials was investigated. The heterostructural nanocomposites with the similar Zn/Al molar ratio and varied La content were prepared by two techniques: via co-precipitation and thermal treatment of ZnAlLa LDHs at 500 °C or via incipient wetness impregnation of ex-ZnAl LDHs with aqueous solutions of lanthanum nitrate and subsequent thermal treatment. The obtained series of materials were characterized by the following techniques: X-ray fluorescence (XRF), N2 adsorption (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis with evolved gas analysis (TG/DTG/EGA), scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FFT). The evaluation of activity toward the high-temperature water gas shift (HT-WGS) within the temperature range of 350–420 °C was carried out on the basis of rate constant measurements in the kinetic mode using a differential reactor. The co-precipitation technique allowed for a better distribution of La in bulk and on the spinel surface than in case of lanthanum incorporation via impregnation. ZnO/Zn(Al,La)2O4 or La2O3–ZnO/ZnAl2O4 mixed oxides were characterized by moderate activity in the HT-WGS reaction. The results reveal that introduction of lanthanum oxide over 2.4–2.8 wt% induces the phase separation of the ZnAl2O4 spinel, forming ZnO on the ZnAl2O4 spinel surface.


Author(s):  
Priyanka Mishra ◽  
Tanzeel Ahmed ◽  
Lalit Singh

Background: Silver nanoparticles (AgNPs) have been used in various medicinal products because of its anti-microbial properties. This research study has reported a simplistic, cost effective and eco-friendly method for the synthesis of Silver nanoparticles. Objective: The objective of present study was to compare the synthesis of silver nanoparticles (AgNPs) from various parts of Citrus maxima fruit like pulp, peel and seed. Methodology: The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy and transmission electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. UV–visible spectrophotometer was used to confirm the synthesis of AgNPs which showed maximum absorption at 410 nm, 420 nm and 430 nm respectively. Expected Results: Fresh peel extract exhibited the highest concentration of silver nanoparticles in comparison to pulp and seed. Fourier-transform infrared spectroscopy (FTIR) spectra analysis confirmed the presence of possible functional groups in AgNPs which can be responsible for reduction of nanoparticles. Morphological characters of AgNPs were analyzed using transmission electron microscopy (TEM) depicting the particles size as 12.58-47.80 nm. The antibacterial property of synthesized AgNPs was analyzed viz Escherichia coli (MTCC 1687) and Staphylococcus aureus (MTCC 902), specify them to be effective against both gram positive and gram negative bacteria. Conclusion: These results suggested that the fresh peel extract of Citrus maxima is a high-quality bioreductant for the synthesis of silver nanoparticles and have prospective for various biomedical applications.


2011 ◽  
Vol 84 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Huan Li ◽  
Jizhong Chen ◽  
Li Hua ◽  
Yunxiang Qiao ◽  
Yinyin Yu ◽  
...  

A new room-temperature ionic liquid (RTIL) consisting of a polyoxometalate (POM) anion and tri-block copolymer (P123)-functionalized imidazolium cation was synthesized and utilized as a halogen-free catalyst for esterification. The catalytic system was a homogeneous solution at the beginning of the reaction, but an emulsion formed during the course of the reaction, and a progressive phase separation of the catalyst occurred at 0 °C over the course of 3 h. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform/infrared spectroscopy (FT/IR) have been used to characterize the properties of the IL during the reaction. The new IL catalyst was found to be highly efficient in the esterification of various alcohols and can be recycled at least seven times.


2010 ◽  
Vol 14 (06) ◽  
pp. 540-546 ◽  
Author(s):  
Lingling Zhang ◽  
Yongtao Lu ◽  
Yukou Du ◽  
Ping Yang ◽  
Xiaomei Wang

Meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS4) functionalized platinum nanocomposites were synthesized and characterized using ultraviolet-visible absorption spectroscopy (UV-vis), fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD) methods. The postulated configuration of TPPS4 functionalized platinum nanocomposite may be described as an antenna system containing a photoreceptive TPPS4 shell and a nanosize platinum core. Fluorescence and photoelectrochemistry studies of both TPPS4 and the platinum nanocomposites showed that efficient electron/energy transfer occurred from the TPPS4 donor to the metallic nanocore acceptor. TPPS4 functionalized platinum nanocomposites are photocatalytic active for water reduction to produce hydrogen. The turnover numbers (TONPt and TONTPPS4) and quantum yield of hydrogen (ϕH2) for the photocatalyst (nPt:nTPPS4= 250) were 44, 11056, and 1.8%, respectively, calculated on the basis of the total amount of H2 evolution for 12 h irradiation.


Sign in / Sign up

Export Citation Format

Share Document