Study on Microstructure and Impact Strength of Nano-SiO2 Toughened Epoxy Resin Composites

2011 ◽  
Vol 695 ◽  
pp. 465-468 ◽  
Author(s):  
Nai Kui Gao ◽  
Pu Dong ◽  
Xin Yu ◽  
Xin Fang ◽  
Chao Gao ◽  
...  

In this paper, composites with different contents of epoxy resin/nano-SiO2were fabricated, the influence of compounding process on nano-SiO2dispersion was studied, the microstructure and the relationship between impact strength and nano-SiO2content were investigated. The results showed that the distribution of nano-SiO2particles in the composites could be improved efficiently using high-speed shearing dispersion method. To composites with or without the coupling agent treatment, the impact strength grew with increasing nano-SiO2content, and increase to a maximum value when nano-SiO2content was 3wt.%. The maximum value was 75.4%, and 45.5% higher than that of monolithic epoxy resin respectively. With the nano-SiO2 content increased continually, the impact strength of composite materials decreased. The coupling agent treatment of nano-SiO2administered to improve the impact strength of the composites.

2013 ◽  
Vol 761 ◽  
pp. 161-164 ◽  
Author(s):  
Nai Kui Gao ◽  
Zhou Xu ◽  
Chun Wu ◽  
Rui Hua Li ◽  
Hai Yun Jin

This paper focuses on the influence of nano-Al2O3 surface state and composite process on the dispersion of nano-Al2O3 filler. Toughening was performed to epoxy resin by nano-Al2O3, and the effect of impact property of epoxy resin/nano-Al2O3 composites was studied. The results showed that coupling agent treatment and high-speed shear dispersion can improve many properties of the composites. With nano-Al2O3 content increasing, the impact strength of the composites increased at first and then decreased. The maximum appears when the nano-Al2O3 content reached 3wt. %, no matter with or without the coupling agent treatment, which is 87.4% and 78.6% higher than that of monolithic epoxy resin respectively. The coupling agent treatment of nano-Al2O3 helped to improve the impact strength of the composites.


Particuology ◽  
2011 ◽  
Vol 9 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Xiaoqiang He ◽  
Dengsong Zhang ◽  
Hongrui Li ◽  
Jianhui Fang ◽  
Liyi Shi

2012 ◽  
Vol 482-484 ◽  
pp. 1959-1962 ◽  
Author(s):  
Quan Fu Yin ◽  
Ming Wei Di

Lignin/epoxy resin composites were prepared by blending lignin with epoxy resin cured by polyamide. The effect of the content of lignin and polyamide on the mechanical properties of the lignin/epoxy resin composites was studied systemically. And the structure for the blend of lignin and epoxy resin without the curing agent was characterized by Fourier transform infrared spectroscopy (FTIR). The results of mechanical properties test showed that the bending strength of the composites decreases gradually with increasing the content of lignin, while the impact strength increased firstly and then decreased. The bending strength of lignin/epoxy resin composites showed a trend of increasing firstly and then decreasing with the increase of the content of polyamide, while the impact strength exhibited an opposite trend. The density for the composites increased with the addition of lignin, and polyamide exhibited an inconspicuous effect on density of the composites. The FTIR analysis results showed that the epoxy resin could be cured by lignin without polyamide, which concluded that the lignin could catalyze the cross-linking of epoxy resin or react with epoxy resin, and this bonding effect would beneficial to the properties of lignin/epoxy resin composites.


2011 ◽  
Vol 311-313 ◽  
pp. 113-116
Author(s):  
Ying Chen ◽  
Jing Xie ◽  
Shang Yue Shen ◽  
Ping Jin

OMMT was compounded by MMT and 1% (v/v) acetic acid dissolved chitosan via solution intercalate method, and then prepared the composites with epoxy resin. The change about spacing of montmorillonite was tested by XRD, and the molecular structure of OMMT was tested by Fourier infrared spectrum. The tensile strength and impact strength of epoxy resin composites were also tested. The result showed that the spacing of montmorillonite first increased then decreased along with the increasing mass fraction of chitosan. The maximum value (d001=1.983 nm) appeared when mass fraction of chitosan was 30%. And tensile strength and impact strength were improved by 86.8 and 51.2% respectively.


2016 ◽  
Vol 51 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Wei Li ◽  
Hongyu Li ◽  
Xinguo Yang ◽  
Wei Feng ◽  
Hongyun Huang

This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide–epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide–epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2019 ◽  
Vol 960 ◽  
pp. 167-173
Author(s):  
Man Shi Qiu ◽  
Ze Hua Pan ◽  
Yuan Yuan Zhang ◽  
Yong Lan Li ◽  
Nai Kui Gao ◽  
...  

The surface state of aramid fiber was modified by coupling agent to characterize the change of the state. The fiber / epoxy resin composites were prepared to study the mechanical and electrical properties and the internal mechanism of how different surface states affect. The results show that, after the treatment with the coupling agent, the surface roughness of the aramid fiber is increased,and the content of Si on the surface reach 5.8%, thus the surface activity is enhanced. At the same time, the treatment makes the properties of composites further improved. When the filling amount of aramid fiber reaches 30 strands, the tensile strength increase by 38.4% due to the coupling agent. In the test of two-layer samples, the breakdown field strength of the composites before and after treatment with coupling agent increased by 15.9% and 20.2%, respectively.Key words: aramid fiber; coupling agent; surface state; mechanical properties; electrical properties


Sign in / Sign up

Export Citation Format

Share Document