Analysis of the Asymmetric Plate Rolling Process

2012 ◽  
Vol 706-709 ◽  
pp. 1438-1443
Author(s):  
Anna Kawałek ◽  
Henryk Dyja ◽  
Ł. Sołtysiak ◽  
Sebastian Mróz ◽  
Piotr Szota

The paper presents the results of the theoretical analysis of the asymmetric plate rolling process conducted in the plate finishing mill. The purpose of the work was to determine the influence of working rolls velocity asymmetry on the value and direction of the bending radius of strip flowing out from the deformation zone. The variable parameters of the process were: rotational speed asymmetry factor, av ; strip shape factor, h0/D; and cross-sectional area reduction ε. For the theoretical study, a commercial computer program, FORGE 2008®, was employed. Working rolls of a diameter of 1100 mm and a constant lower working roll rotational speed of n = 80 rpm were assumed for the study. The asymmetric rolling process was achieved by varying the rotational speed of the upper roll, which was lower than that of the lower roll. The range of variation of the roll rotational speed asymmetry factor, av, was 1.01÷1.20. On the basis of the conducted theoretical analysis, the influence of the speed asymmetry factor (av = 1.00÷1.20) on plate curvature upon exit from the deformation zone was determined, and the distributions of strip velocity.

2010 ◽  
Vol 165 ◽  
pp. 79-84
Author(s):  
Anna Kawałek ◽  
Henryk Dyja ◽  
Marcin Knapiński

This work reports the results of theoretical analysis of asymmetric rolling process of plates in the finishing mill of plate rolling. Its aim was to determine the influence of asymmetry velocity of working rolls on the value and direction of bending radius of strip flowing from the deformation zone. Variables of the considered process were: rotational speed asymmetry factor av, strip shape factor h0/D and reduction of cross-sectional area ε.


2014 ◽  
Vol 59 (4) ◽  
pp. 1533-1538
Author(s):  
A. Kawałek ◽  
H. Dyja ◽  
M. Knapinski ◽  
G. Banaszek ◽  
M. Kwapisz

Abstract In order to enhance the quality of plates, various solutions are being implemented, including normalizing rolling, the process of rolling followed by accelerated cooling, as well as new roll gap control systems. The hydraulic positioning of rolls and the working roll bending system can be mentioned here. The implementation of those systems results in increased loads of the rolling stands and working tools, that is the rolls. Another solution aimed at enhancing the cross-sectional and longitudinal shape of rolled plate is the introduction of asymmetric rolling, which consists in the intentional change of the stress and strain state in the roll gap. Asymmetric rolling systems have been successfully implemented in strip cold rolling mills, as well as in sheet hot rolling mills. The paper present results of studies on the effect of roll rotational speed asymmetry and other rolling process parameters on the change in the shape of rolled strip and the change of rolls separating force for the conditions of normalizing rolling of plates in the finishing stand. The variable process parameters were: the roll rotational speed asymmetry factor, av; the strip shape factor, h0/D; and the relative rolling reduction, ε. Working rolls of the diameter equal to 1000 mm and a constant lower working roll rotational speed of n = 50 rpm were assumed for the tests. The asymmetric rolling process was run by varying the rotational speed of the upper roll, which was lower than that of the lower roll. The range of variation of the roll rotational speed factor, av =vd/vg, was 1.01÷1.15. A strip shape factor of h0/D = 0.05÷0.014 was assumed. The range of rolling reductions applied was ε = 0.08÷0.50. The material used for tests was steel of the S355J2G3 grade. For the simulation of the three-dimensional plastic flow of metal in the roll gap during the asymmetric hot rolling of plates, the mathematical model of the FORGE 2008 ® program was used. For the mathematical description of the effect of rolling parameters on the strip curvature and rolls separating force the special multivariable polynomial interpolation was used. This method of tensor interpolation in Borland Builder programming environment was implemented. On the basis of the carried out analysis can be state, that by using the appropriate relative rolling reduction and working roll peripheral speed asymmetry factor for a given feedstock thickness (strip shape ratio) it is possible to completely eliminate the unfavorable phenomenon of strip bending on exit from the roll gap, or to obtain the permissible strip curvature which does not obstructs the free feed of the strip to the next pass or transferring the plate to the accelerated plate cooling stations. Additionally by introducing the asymmetric plate rolling process through differentiating working roll peripheral speeds, depending on the asymmetry factor used, the magnitude of the total roll separating force can be reduced and, at the same time, a smaller elastic deflection of rolling stand elements can be achieved. As a result smaller elastic deflection of the working rolls, smaller dimensional deviations across its width and length finished plate can be obtained.


2010 ◽  
Vol 638-642 ◽  
pp. 2585-2590
Author(s):  
Anna Kawałek ◽  
Henryk Dyja ◽  
Marcin Knapiński

In this work there has been conducted theoretical analysis of the process of asymmetric rolling of plate in finishers of plate mills. On the basis of the carried out research the influence of asymmetry factor av, deformation ε and strip form h0/D on strip bend during the process of rolling has been determined. For this reason, the following resolutions have been pointed out: velocity of flow, pure shear and intensity of deformation in deformation zone.


Author(s):  
A. Kawalek ◽  
H. Dyja ◽  
K. Ozhmegov

During plate rolling in most cases a breakdown of symmetry conditions of the strip deformation relative to the upper and lower rolls takes place. The rolling process becomes an asymmetric one. This phenomenon causes an adverse bending of the strip towards the lower or upper roll. Subsequent finishing operations do not ensure the exclusion of the deformed (wavy) shape, since the strip has a high rigidity. With this production, large technological waste, associated with the undulation of the front end of the strip arises. In addition, the work rolls of the rolling mill and auxiliary equipment are subject to increased wear. The introduction of controlled asymmetry into the rolling process by differentiating speed of rotation of the work rolls can be one of the ways to prevent this phenomenon. Using of asymmetry allows to change the stress and strain state in the deformation zone. This method does not increase the load on the rolling stand and the gear of the rolling mill. The paper presents results of investigation of plate rolling parameters (billet feeding angle, degree of deformation, value of the asymmetry coefficient of rolls rotation speed) on the strip curvature. The work was carried out according to conditions of hot rolling of steel grade S355J2+N. For numerical simulation of the rolling process the coefficients of the Hensel–Spittel function were refined. The authors conducted a study of rolling of plates using two types of asymmetry, a geometric (as a result of feeding the workpiece at an angle) and a kinetic (by changing the speed of rotation of individual rolls). The analysis of the results was carried out using numerical simulation based on the modern Forge soft- ware package. According to the results of the work, an analysis of the influence of the parameters of plates hot rolling on the metal flow in the deformation zone is presented. The conditions for reducing the curvature of the end of the strip are determined. The expediency of introducing a controlled asymmetric rolling process by application of different speeds of rotation of the work rolls is shown.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2013 ◽  
Vol 199 ◽  
pp. 436-441 ◽  
Author(s):  
Anna Kawałek ◽  
Henryk Dyja ◽  
Marcin Knapiński ◽  
Marcin Kwapisz ◽  
Konrad Błażej Laber

In order to improve the quality of plates, an asymmetric rolling process can be introduced, which will help reduce the total roll separating force and increase plate flatness and decrease thickness deviations along the width and length of rolled strip [1÷.


2010 ◽  
Vol 658 ◽  
pp. 440-443
Author(s):  
Qi Sun ◽  
Yu Hua Pang ◽  
Chang Rui Liu ◽  
Hai Feng Yu ◽  
Bin Lu ◽  
...  

Due to the complexity of the actual rolling process, asymmetrical conditions of deformation zone can cause front end bending or lead to poor shape, profile or quality of the product, as well as reducing productivity. Therefore it is important to study the geometric parameters of deformation zone in order to determine the work parameters accurately during rolling. Because the stock is often inclined when it enters the rolls, the deformation zone is asymmetrical. In this investigation, a model of calculating contact length between stock and roll precisely is deduced according to the theory of rolling. The results by theoretical calculation and experiment prove that the projected arc is raised while the stock enters the rolls serious asymmetrically, as well as the increase of the entrance thickness of the rolling stock and the decrease of the exit thickness of the rolled stock.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 956
Author(s):  
Denis Pustovoytov ◽  
Alexander Pesin ◽  
Puneet Tandon

Asymmetric sheet rolling is a process used when there are differences in any technological parameters in the horizontal plane across the width of the deformation zone or in the vertical plane between the top and bottom surfaces of the deformation zone. Asymmetry can either have random causes, or it can be created purposefully to reduce rolling force, improve sheet flatness, minimize the ski effect, obtain thinner sheets and for grain refinement and improvement of texture and mechanical properties of sheet metals and alloys. The purpose of this review is to analyze and summarize the most relevant information regarding the asymmetric (hot, warm, cold, cryo) rolling processes in terms of the effect of purposefully created asymmetry on grain size and mechanical properties of pure Mg, Al, Ti and their alloys. The classification and fundamentals of mechanics of the asymmetric rolling process are presented. Based on the analysis of publications related to asymmetric rolling, it was found that a superior balance of strength and ductility in pure Mg, Al, Ti and their alloys could be achieved due to this processing. It is shown that asymmetric rolling in comparison with conventional severe plastic deformation methods have an undeniable advantage in terms of the possibility of the production of large-scale sheets.


2020 ◽  
pp. 27-35
Author(s):  
Zh. A Ashkeyev ◽  
V. A Andreyachshenko ◽  
Zh. U Bukanov

The asymmetric rolling process has proven itself well as a way to reduce the pressure on the rolls, reduce the rolling force, and improve the mechanical characteristics of the rolled metal. As the factors providing the asymmetry of the process, the mismatch of the circumferential speeds of the work rolls, the different diameters of the rolls, the coefficients of friction, and others are usually used. Methods that provide a change in the nature of the metal flow due to the action of working elements with a special configuration of the working surface are especially promising. This article presents the results of the study of the stress state, speed and power parameters when rolling a strip in biconical rolls with concave and convex surfaces. Analysis of the results obtained by analytical methods show that the intensity of shear deformation rates along the strip width is 0.36-0.65 s-1, which is impossible to implement when rolling in smooth cylindrical rolls, since there is an intense elongation of grains in the direction of rolling. The occurrence of the intensity of shear deformations creates favorable conditions in the deformation zone to prevent stretching of the structure and to reduce dangerous tensile stresses. The results of the study showed the prevalence of compressive stresses in the deformation zone, which prevent the intensive elongation of grains in the longitudinal direction, reduce tensile stresses and contribute to the leveling of mechanical properties, closing and welding of internal defects. Theoretical dependencies are proposed to calculate the force parameters for asymmetric rolling in biconical rolls. The obtained models of the stress state, velocity hodograph, force characteristics predict the efficiency of using the biconical rolls in cold and hot rolling mills.


2014 ◽  
Vol 494-495 ◽  
pp. 461-465 ◽  
Author(s):  
Bao Shou Sun ◽  
Zhe Hong ◽  
Long Qing Xu ◽  
Xue Dao Shu ◽  
Bo Qin Gu ◽  
...  

This paper simulates the process of the high-neck flange closed rolling on DEFORM-3D and optimizes the rolling process parameter by analyzing the results based on the orthogonal experimental design. For the high-neck flange, the results show that the effects on ellipticity are in the order of the mandrel feed speed, the main roll rotational speed and initial blank temperature. The former two factors show the significance while the initial blank temperature does not show that.


Sign in / Sign up

Export Citation Format

Share Document