Simulation and Control of Distortion of Hydro Turbine Blade Steel Casting in Heat Treatment Process

2012 ◽  
Vol 706-709 ◽  
pp. 1580-1585
Author(s):  
Hai Liang Yu ◽  
Jin Wu Kang ◽  
Tian You Huang

Blades are key part of hydro turbines, which often distorts during heat treatment process for their special structures. In this paper, thermal fluid finite element simulation of the forced air cooling process of a blade casting was carried out under a variety of distances between fans and blades, air speeds, groups of fans and circumstance temperatures. The temperature fields of blade castings were obtained. A novel parameter, temperature difference between surfaces of castings along thickness direction, was proposed to analyze the distortion of blade castings. The distortion behavior of blade castings with martensitic stainless steel were discussed, which is in good agreement with distortion regularity of the experimental ones. The temperature differences between blade casting surfaces are always greater than zero, resulting in distortion which could be divided into three stages. Finally, we focused on discussing the control methods of distortion behavior of blade castings which could be operated in actual production.

2015 ◽  
Vol 727-728 ◽  
pp. 322-326 ◽  
Author(s):  
Shi Lu Zhao ◽  
Zhen Zhang ◽  
Lian Chong Qu ◽  
Jun Zhang ◽  
Jian Ming Wang ◽  
...  

Effects of heat treatment process of quenching and tempering under different temperature conditions on mechanical properties of X70 grade pipeline steel bends were studied. Brinell hardness, yield strength, tensile strength, elongation and impact absorbing energy of the bends were tested by using hardness tester, cupping machine and impact testing machine, respectively. It shows that the best heat treatment process of the X70 grade pipeline steel bends is quenching at 890 °Cand thermal insulation for 26 min then water cooling followed by tempering at 590 °C and thermal insulation for 60 min then air cooling. Furthermore, the resulting hardness, yield strength, tensile strength, yield ratio, elongation and impact absorbing energy reach HB230, 595 MPa, 725 MPa, 0.82, 28% and 300 J respectively, which has excellent comprehensive mechanical properties.


2014 ◽  
Vol 556-562 ◽  
pp. 476-479
Author(s):  
Ming Xing Zhou ◽  
Guang Xu ◽  
Hai Lin Yang ◽  
Tao Xiong

The heat treatment process, normalizing plus tempering, of 150 mm-thick plate of 12Cr2Mo1R pressure vessel steel was proposed according to the results of finite element simulation and static CCT curve obtained by thermal simulation experiments. After normalizing at 910 °C for 10 minutes followed by water cooling and tempering at 650 °C for 60 minutes, the microstructure at 1/4 position along the thickness direction of the thick plate consists of bainite and all the mechanical properties meet delivery requirements.


2021 ◽  
Author(s):  
Fenghong CAO ◽  
Yaohui XU ◽  
Chang CHEN ◽  
Zhaohui QIN ◽  
Chi DENG

The relationship among the microstructure, hardness and electrical conductivity of the as-forged ZYK530 Mg alloy after heat treatment was analyzed and studied using a microscope, X-Ray Diffractometer, eddy current conductivity meter, and Vickers microhardness tester, to explore optimum heat treatment process of ZYK530 Mg alloy. The results show that: with the prolongation of holding time, the electrical conductivity and microhardness show the same change trend, both of which show an oscillatory upward trend, and then decrease in an oscillatory downward trend after reaching the  peak value. There is a linear positive correlation between the conductivity and the hardness, and the fitting results of the conductivity and hardness are in good agreement with the measured results; combined with the actual production, when the heat-treatment is 480 ℃ × 8 h + 220 ℃ × 3 h, the highest hardness is 79.2 HV, the electroconductivity is 36.2%IACS, and the comprehensive performance is the best, which is the best heat treatment process.


2011 ◽  
Vol 21 (1) ◽  
pp. 55-61
Author(s):  
Hai-liang Yu ◽  
Jin-wu Kang ◽  
Tian-jiao Wang ◽  
Ji-yu Ma ◽  
Yong-yi Hu ◽  
...  

2014 ◽  
Vol 697 ◽  
pp. 95-101
Author(s):  
An Min Li ◽  
Ding Ma ◽  
Qi Feng Zheng ◽  
Ruo Huai Chen ◽  
Zu Jiang Huang ◽  
...  

The as-cast structure of grate bar used in sintering trolley is primarily comprised of austenite and eutectic (eutectic austenite and eutectic carbide). The austenite is dendrite, while the carbide is reticular and chrysanthemum-like. The grate bars were quenched and tempered under various temperature (one set of samples: quenching (975~1050°C); the other: quenching (1000°C) + tempering (240~600°C)). With rise in quenching temperature, the content of martensite increases and gradually stabilizes, and the hardness increases and then decreases (the maximum is 61.5HRC). For the tempered simple, the strip-like carbides gradually become smaller, shorter and homogenized; the resistance to temper softening is high and the maximum hardness is 58HRC; the wear resistance gradually decreases and is lower than that of as-cast one when the temperature is higher than 480°C. The heat treatment process to improve the service properties of grate bars is: quenching (1000°C, 2.5h, and air-cooling) + tempering (300~420°C, 2.5h, and air-cooling).


2021 ◽  
Vol 1035 ◽  
pp. 312-317
Author(s):  
Peng Qi ◽  
Bo Long Li ◽  
Tong Bo Wang ◽  
Lian Zhou ◽  
Zuo Ren Nie

The effects of the heat treatment process parameters on the microstructure and mechanical properties of a selective laser melted (SLMed) AlSi10Mg alloy were systematically investigated. The SLMed AlSi10Mg alloy was treated with T1 (180°C× 4h + air cooling) process, which had the microstructure of fine α-Al grains, fine Si phase, and nano-sized precipitations. The microhardness significantly increased to 150 HV, which is even higher than as-SLMed one (126 HV). The microhardness of SLMed AlSi10Mg alloy treated with T4 (540°C × 2h + water cooling) heat-treatment process significantly decreased to 62 HV due to the growth of α-Al grains, Si phase and the formation of β-AlFeSi phase. However, the microhardness and ultimate tensile strength of AlSi10Mg alloy treated with T6 (540°C × 2 h water cool + 180°C × 4 h air cool) process decreased to 91 HV, although the strengthening precipitation of Mg2Si phase formed. It indicates that the Mg2Si phase cannot compensate for the adverse effect of grain growth. It may provide the best potential heat treatment method for fabricating the high strength SLMed AlSi10Mg alloy.


2020 ◽  
Vol 835 ◽  
pp. 50-57
Author(s):  
Saeed Ghali ◽  
Mohamed Kamal El-Fawkhry ◽  
Taha Mattar

This article aims at investigation the effect of partial and total replacement of molybdenum by tungsten in ordinary heat resistance steel, in term of constituent phases. Three steel grades of P91 steel were produced in induction furnace with different molybdenum and tungsten contents. The produced steel were hot forged at 950 °C – 1100 °C, followed by air cooling. The ordinary heat treatment was applied through austenizing at 1050 °C for one hour followed by water quenching and then, they were tempered at 700 °C for 2 hours. Optical microscope, Scanning Electron Microscope (SEM), and EDX were used to investigate the microstructure and precipitated phases after complete heat treatment process. In addition, Thermo-Calc program was used to predict the phases which may be formed. The results showed that replacement of molybdenum by tungsten has an effect on the solubility of different intermetallic phases at high temperature, delaying the deteriorative Z-phase.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


Sign in / Sign up

Export Citation Format

Share Document