Effect of Water Cooling on Grain Structures and General Mechanical Properties of 2219-T6 Friction Stir Welded Joint

2012 ◽  
Vol 706-709 ◽  
pp. 2986-2991
Author(s):  
Hui Jie Liu ◽  
H.J. Zhang ◽  
L. Yu

Regarding the friction stir welding (FSW) of heat–treatable aluminum alloys, although the thermal flow does not cause any material fusion, it can still deteriorate the local mechanical properties of the joints due to coarsening or dissolution of the strengthening precipitates. Therefore, it is of significance and possible to improve the joint properties by controlling the temperature level. For this purpose, a 2219-T6 aluminum alloy was underwater friction stir welded in the present study, and the temperature histories, grain structures and the general mechanical properties of the joints were investigated in order to illuminate the effect of water cooling. The results reveal that the water cooling action can effectively control the temperature level in the joint. The recrystallized grains in the weld nugget zone (WNZ) are significantly refined under the water cooling effect. The mechanical analysis indicates that the tensile strength of the joint can be improved by 6% through the external water cooling action. Additionally, the underwater joint also exhibits superior bend and impact properties to the normal joint, indicating the positive effect of water cooling on the general mechanical properties of the joints.

Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


2018 ◽  
Vol 206 ◽  
pp. 03002 ◽  
Author(s):  
Yunqiang Zhao ◽  
Chungui Wang ◽  
Chunlin Dong

In this study, a novel welding method called water cooling bobbin-tool friction stir welding (WBT-FSW) was developed. 4 mm-thick 6063-T6 aluminum alloy sheets were successfully jointed by WBT-FSW. Comparative studies on macro/microstructural characteristics and mechanical properties of the WBT-FSW and conventional bobbin-tool friction stir welding (BT-FSW) joints were carried out. The results indicated that the water mist cooling can significantly decrease the welding temperature and improve both the weld formation and the mechanical properties of the joint. The tensile strength of the WBT-FSW joint was 11.4% higher than that of BT-FSW joint.


2017 ◽  
Vol 33 (9) ◽  
pp. 1009-1014 ◽  
Author(s):  
B.B. Wang ◽  
F.F. Chen ◽  
F. Liu ◽  
W.G. Wang ◽  
P. Xue ◽  
...  

2013 ◽  
Vol 465-466 ◽  
pp. 1309-1313
Author(s):  
Mohd Hasbullah Idris ◽  
Mohd Shamsul Husin

The present study is aimed to determine the effect of friction stir welding pin; square and diamond shape on mechanical properties of butt joint AA6061 weldment. Welding was carried out at different plunge depths of 0.0, 0.2, 0.3 and 0.4 mm together with rotation and transverse speeds of 500 rpm and 40 mm/min, respectively. Material flow, tensile strength and hardness of the weldment were evaluated. The results indicated that joint properties were significantly affected by tool design. It was found that material flow was higher for diamond pin tool compared to that of square pin resulting in considerable increased in tensile strength of the joint. In addition, the highest tensile strength was obtained on the samples welded with square shape pin at 0.4 mm plunge depth whilst the lowest was by diamond shape at the plunge depth of 0.0 mm. Regardless of pin shape and plunge depth; asymmetrical hardness distribution was observed for all weldments. The highest hardness was found to be close to the weld line produced by the diamond shaped pin at 0.0 mm plunge depth.


2010 ◽  
Vol 638-642 ◽  
pp. 35-40
Author(s):  
Terry R. McNelley ◽  
Srinivasan Swaminathan ◽  
E. Sarath Menon ◽  
J.Q. Su

Parameters for multi-pass FSP include the pattern of tool traverse and step-over distance between successive passes. Multi-pass FSP was conducted on as-cast NiAl bronze and as-cast AA5083 in order to modify stir zone (SZ) microstructures and mechanical properties. Highly refined and homogeneous SZ microstructures may be produced by FSP. Refined and equiaxed grain structures reflect recrystallization during FSP; mechanisms leading to homogenization by redistribution of microstructure constituents remain to be determined. Refined microstructures exhibit enhanced ambient-temperature properties and superplasticity at elevated temperatures.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6296
Author(s):  
Anton Naumov ◽  
Evgenii Rylkov ◽  
Pavel Polyakov ◽  
Fedor Isupov ◽  
Andrey Rudskoy ◽  
...  

Friction Stir Welding (FSW) was utilized to butt−join 2024–T4 aluminum alloy plates of 1.9 mm thickness, using tools with conical and tapered hexagonal probe profiles. The characteristic effects of FSW using tools with tapered hexagonal probe profiles include an increase in the heat input and a significant modification of material flow, which have a positive effect on the metallurgical characteristics and mechanical performance of the weld. The differences in mechanical properties were interpreted through macrostructural changes and mechanical properties of the welded joints, which were supported by numerical simulation results on temperature distribution and material flow. The material flow resulting from the tapered hexagonal probe was more complicated than that of the conical probe. If in the first case, the dynamic viscosity and strain rate are homogeneously distributed around the probe, but in the case of the tapered hexagonal probe tool, the zones with maximum values of strain rates and minimum values of dynamic viscosity are located along the six tapered edges of the probe.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4098
Author(s):  
Mohammadreza Rafati ◽  
Amir Mostafapour ◽  
Hossein Laieghi ◽  
Mahesh Chandra Somani ◽  
Jukka Kömi

The present paper aims to compare the microstructural and mechanical properties of CK45 carbon steel plates, joined by friction stir (FSW) and tungsten inert gas (TIG) welding methods. Besides visual inspection, the welded joints and the base material were subsequently evaluated in respect of optical microstructures, hardness and tensile properties. Sound joints could be accomplished using both the FSW and TIG welding methods through proper selection of process parameters and the filler metal. The influence of a water-cooling system on the FSW and various filler metals on the quality of TIG welding were further assessed. Both the FS welded sample as well as TIG welded samples with two different filler metals ER70S-6 and ER80S-B2 exhibited brittle behavior that could be mitigated through optimized water cooling and use of R60 filler metal. A drastic reduction of brittle martensite phase constituent in the microstructure corroborated significant improvements in mechanical properties of the welded zones for both the FSW sample as well as TIG welded samples with R60 filler metal.


Sign in / Sign up

Export Citation Format

Share Document