Simulation of Line Annealing of Type 430 Ferritic Stainless Steel

2012 ◽  
Vol 715-716 ◽  
pp. 437-446
Author(s):  
Anna P. Kisko ◽  
Pasi P. Suikkanen ◽  
C. Isaac Garcia ◽  
K. Cho ◽  
M. Hua ◽  
...  

The annealing behavior of cold rolled Type 430 ferritic stainless steel is the subject of this paper. The steel was cold rolled 79%, then heated at 6 °C/s to the soaking temperature of 841 °C, which is just below the Ae1temperature. During heating, specimens were quenched from selected temperatures between 650 and 841 °C and after various times at 841 °C. These quenched samples underwent metallographic examination and micro-hardness determination. The results indicated that under the prevailing experimental conditions, the hardness appeared to correlate strongly with the extent of recrystallization. The kinetics of recrystallization appeared to originate in the cold worked state, where three kinds of grain were found: (i) smooth elongated, featureless of α-fiber orientation {001}<100>; (ii) irregular fishbone grains of the γ-fiber orientations {111}<112> plus {111}<110>; and (iii) twisted grains of the η-fiber orientation {001}<100>. It was found that the twisted grains of the η-fiber were the first to recrystallize, with the fishbone grains of the γ-fiber second, and the smooth elongated, featureless grains of the α-fiber last. It was found that the grains of the α-fiber orientation {001}<100> and the η-fiber orientation {001}<100> were replaced with grains of the γ-fiber orientations as recrystallization progressed. These results are discussed in terms of recrystallization and texture development.

2013 ◽  
Vol 662 ◽  
pp. 441-444
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effect of RE on modifying inclusions of 430 ferrite stainless steel was studied by metallographic examination, SEM and electron spectroscopy. Thermodynamic calculation was used to analyze the formation of RE inclusions in 430 ferrite stainless steel. The result shows that sulfide and other irregular inclusions are modified to round or oval-shaped RE2O2S and RES.


2018 ◽  
Vol 919 ◽  
pp. 84-91 ◽  
Author(s):  
Marek Pagáč ◽  
Jiří Hajnyš ◽  
Jana Petrů ◽  
Tomáš Zlámal

The paper deals with the comparison of surface hardness and porosity of stainless steel 316L (1.4404) produced by additive technology (SLM) and cold rolled steel. The subject of the paper is a comparison of two sets of samples where the first set of samples was made on a Renishaw AM400 with a laser output of 200 W and 400 W. In each set of samples, were the samples without heat-treated and heat-treated by annealing. Measurement of porosity and surface hardness were performed on all samples. The surface hardness of the material was evaluated by a static test according to Brinell CSN EN 10003-1. The porosity measurement was performed by the optical method. The measured values were compared with the reference material, which was cold-rolled steel, in which both the porosity and the hardness of the surface were measured.


2000 ◽  
Vol 650 ◽  
Author(s):  
J. I. Cole ◽  
T. R. Allen ◽  
H. Kusanagi ◽  
K. Dohi ◽  
J. Ohta

ABSTRACTMicrostructural examination and in situ post-irradiation annealing studies were carried out on 20% cold-worked 316 stainless steel (SS) hexagonal duct material following irradiation in the reflector region of the EBR-II reactor. Stainless steel hexagonal ducts were used to house reactor subassemblies and provide a valuable source of information on irradiation behavior of reactor structural materials at lower dose-rates (on the order of 10-8 dpa/sec) than previously examined. The microstructural development of samples irradiated to doses of 1, 20 and 30 dpa is examined, while the post-irradiation annealing behavior of a sample irradiated to 20 dpa is described. Annealing studies were performed at 370 and 500°C to examine the kinetics of radiation damage recovery as a function of annealing temperature. The initial (pre-annealed) microstructures consists of a substantial density of irradiation induced chromium-rich M23C6 and M6C carbides which form both on the grain boundaries and within the grain interiors. Recovery of the cold- work is evident in the 1 dpa sample while samples irradiated to 20 and 30 dpa possess dense populations of voids and dislocation structures consisting of networks of line dislocations and faulted dislocation loops. Results indicate that post-irradiation annealing of the samples at 370°C for 1 hour has little effect on the microstructure, while further annealing at 500°C for 1 hour results in void shrinkage, the formation of small cavities, and a reduction in the dislocation loop and network density.


2005 ◽  
Vol 495-497 ◽  
pp. 363-368
Author(s):  
Soo Ho Park ◽  
Hyung Gu Kang ◽  
Yong Deuk Lee ◽  
Jae Chul Lee ◽  
Moo Young Huh

In order to investigate the effect of the reduction degree per rolling pass on the evolution of recrystallization textures and microstructures, the hot band of 17.5 Cr-1.1 Mo ferritic stainless steel sheets were cold rolled with lubrication according to two processing routes, by which different reduction degrees per pass were introduced. Rolling with a large number of passes led to the formation of fairly homogeneous rolling textures at all through-thickness positions. In contrast, cold rolling with large draughts resulted in pronounced texture gradients along the thickness direction. After recrystallization annealing, the texture maximum was obtained at {334}<483> in all samples regardless of the rolling routes and thickness layers. During subsequent annealing, recrystallization was observed to be faster in those grains with {111}<uvw> orientations, while it was retarded in grains having orientations close to {001}<110>.


2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Maria de Fatima Salgado ◽  
Jackeline Macêdo de Sousa Santos ◽  
Giscard Eanes Dias Viana ◽  
João Alberto Santos Porto ◽  
Gabriel de Souza Veras Fontinele ◽  
...  

Stainless steels may be used and exposed to aggressive gases at high temperatures. The oxidation behavior of AISI 439 ferritic stainless steel, was investigated by oxidation treatment at 850 ºC and 950 ºC, for 50h in Synthetic Air with 20% O2 atmosphere in a tubular oven and in a thermobalance. The oxidation kinetics of films are determined by measuring the mass versus oxidation time. The microstructure and chemical composition of the oxides were determined by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS).  Chemical analysis by EDS showed that films formed on AISI 439 stainless steel exhibited Cr as the principal element in the oxide film, in proportions to form the chromium oxide (Cr2O3) and the following elements: Mn, Fe, Ti and Si. Based on the oxidation kinetics, it was observed that steel oxidation follows the parabolic behaviour with increase in temperature and it produced the highest oxidation rate at 950 ºC and the lowest rate at 850 ºC. 


2018 ◽  
Vol 941 ◽  
pp. 364-369
Author(s):  
Matias Jaskari ◽  
Antti Järvenpää ◽  
L. Pentti Karjalainen

Typical applications of ferritic stainless steels require good formability of a steel that is highly dependent on the processing route. In this study, the effects of heating rate and peak temperature on the texture and formability of a 78% cold-rolled unstabilized 17%Cr (AISI 430) ferritic stainless steel were studied. The cold-rolled sheet pieces were heated in a Gleeble 3800 simulator at the heating rates of 25 °C/s and 500 °C/s up to various peak temperatures below 950 °C for 10 s holding before the final cooling at 35 °C/s to room temperature. Microstructures were characterized and the texture of the annealed samples determined by the electron backscatter diffraction method. The R-value in various directions was determined by tensile straining to 15%. It was established that the high heating rate of 500 °C/s tends to promote the nucleation of grains with the {111}<uvw> orientations during the early state of the recrystallization. The higher heating rate led to a slightly finer grain size and to a marginal improvement in the intensity of the gamma-fibre texture. A coarser grain size would be beneficial for the formability, but the grain growth was suppressed due to low peak temperatures and a short soaking time. Anyhow, the fast annealing resulted in an enhanced R-value in the transverse to rolling direction. The results indicate that even a short annealing cycle is plausible for producing ferritic stainless steels with the formability properties comparable to those of commercial counterparts.


Sign in / Sign up

Export Citation Format

Share Document