Growth and Light Properties of Fluorescent SiC for White LEDs

2012 ◽  
Vol 717-720 ◽  
pp. 87-92
Author(s):  
Mikael Syväjärvi ◽  
Rositza Yakimova ◽  
Motoaki Iwaya ◽  
Tetsuya Takeuchi ◽  
Isamu Akasaki ◽  
...  

The LED technology started to developed many years ago with red light emitting diodes. To achieve the blue LED, novel growth technologies and process steps were explored, and made it possible to demonstrate efficient blue LED performance from nitrides. The efficiency was further developed and blue LEDs were commercially introduced in the 1990’s. The white LED became possible by the use of the blue LED and a phosphor that converts a part of the blue light to other colors in the visible range to combine into white light. However, even today there are limitations in the phosphor-based white LED technology, in particular for general lighting, and new solutions should be explored to speed the pace when white LEDs will be able to make substantial energy savings. In this paper we overview gallium nitride materials evolution and growth concepts for LEDs. We describe the fluorescent silicon carbide material prepared by a novel growth technology for a new type of white LED in general lighting with pure white light. This paper introduces an interesting research in fundamental growth and optical properties of light emitting silicon carbide.

2018 ◽  
Vol 42 (18) ◽  
pp. 15207-15214 ◽  
Author(s):  
Bo Yan ◽  
Gui-Gen Wang ◽  
Long-Fei Liu ◽  
Xin-Zhong Wang ◽  
You-Xiao Chen ◽  
...  

A type of warm-white-light-emitting Al6Si2O13:Eu2+,Mn2+ phosphor with high color rendering index was synthesized for UV-excited white LED.


2004 ◽  
Vol 449-452 ◽  
pp. 953-956
Author(s):  
J.K. Park ◽  
Chang Hoi Kim ◽  
Kyung Joo Choi ◽  
H.D. Park ◽  
Se Young Choi

We have synthesized a Eu2+-activated Sr2SiO4yellow phosphor and investigated an attempt to develop white LEDs by combining it with a GaN blue LED chip. Two distinct emission bands from the GaN-based LED and the Sr2SiO4:Eu phosphor are clearly observed at 400 nm and at around 550 nm, respectively. These two emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (400 nm chip)-based Sr2SiO4:Eu exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.


2017 ◽  
Vol 41 (18) ◽  
pp. 9826-9839 ◽  
Author(s):  
Boddula Rajamouli ◽  
Rachna Devi ◽  
Abhijeet Mohanty ◽  
Venkata Krishnan ◽  
Sivakumar Vaidyanathan

The red light emitting diode (LED) was fabricated by using europium complexes with InGaN LED (395 nm) and shown digital images, corresponding CIE color coordinates (red region) as well as obtained highest quantum yield of the thin film (78.7%).


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


2021 ◽  
Vol 10 (4) ◽  
pp. 1930-1935
Author(s):  
Phan Xuan Le ◽  
Le Hung Tien

Among the structures using for fabricating white light-emitting diodes (WLEDs) such as the conformal coating or in-cup geometries, the remote phosphor structure gives the highest luminous efficacy. However, in terms of color quality, its performance is not as good as the others. The red-light compensation has been reported as the effective solution for enhancing the color quality of WLEDs. Hence, this study adopted the idea and applied to the dual-layer phosphor structure. The phosphor used to boost the red color in light formation is (Y,Gd)BO3:Eu particle. The dual-layer remote phosphor structure was simulated with the red (Y,Gd)BO3:Eu phosphor layer above the original yellow phosphor YAG:Ce3+ one. The WLEDs with different correlated color temperatures of 5600 K, 6600 K and 7700K were experimented. Mie-theory and Lambert-Beer law were applied to examine the results. The growth in color rendering index (CRI) and color quality scale (CQS) with the increase of (Y,Gd)BO3:Eu phosphor concentration was observed. Nevertheless, the lumen efficacy would be degraded if the concentration was over a certain number. The information provided in this article is useful for the development of high-power WLED production with greater color quality.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 170 ◽  
Author(s):  
Alla Silkina ◽  
Bethan Kultschar ◽  
Carole A. Llewellyn

Improving mass cultivation of cyanobacteria is a goal for industrial biotechnology. In this study, the mass cultivation of the thermophilic cyanobacterium Chlorogloeopsis fritschii was assessed for biomass production under light-emitting diode white light (LEDWL), far-red light (FRL), and combined white light and far-red light (WLFRL) adaptation. The induction of chl f was confirmed at 24 h after the transfer of culture from LEDWL to FRL. Using combined light (WLFRL), chl f, a, and d, maintained the same level of concentration in comparison to FRL conditions. However, phycocyanin and xanthophylls (echinone, caloxanthin, myxoxanthin, nostoxanthin) concentration increased 2.7–4.7 times compared to LEDWL conditions. The productivity of culture was double under WLFRL compared with LEDWL conditions. No significant changes in lipid, protein, and carbohydrate concentrations were found in the two different light conditions. The results are important for informing on optimum biomass cultivation of this species for biomass production and bioactive product development.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Junli Huang ◽  
Liya Zhou ◽  
Yuwei Lan ◽  
Fuzhong Gong ◽  
Qunliang Li ◽  
...  

AbstractEu3+-doped CaZrO3 phosphor with perovskite-type structure was synthesized by the high temperature solid-state method. The samples were characterized by X-ray diffraction, scanning electron microscopy, fluorescence spectrophotometer and UV-vis spectrophotometer, respectively. XRD analysis showed that the formation of CaZrO3 was at the calcinations temperature of 1400°C. The average diameter of CaZrO3 with 4 mol% doped-Eu3+ was 2µm. The PL spectra demonstrated that CaZrO3:Eu3+ phosphor could be excited effectively in the near ultraviolet light region (397 nm) and emitted strong red-emission lines at 616 nm corresponding to the forced electric dipole 5 D 0 → 7 F 2 transitions of Eu3+. Meanwhile, the light-emitting diode was fabricated with the Ca0.96ZrO3:Eu0.043+ phosphor, which can efficiently absorb ∼ 400 nm irradiation and emit red light. Therefore Ca0.96ZrO3:Eu0.043+ may have applications for a near ultraviolet InGaN chip-based white light-emitting diode.


Nanoscale ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 4686-4695 ◽  
Author(s):  
Young Chul Sim ◽  
Seung-Hyuk Lim ◽  
Yang-Seok Yoo ◽  
Min-Ho Jang ◽  
Sunghan Choi ◽  
...  

Multifaceted dodecagonal ring structures emit light of various colours with high efficiency and are demonstrated to be phosphor-free white LEDs.


NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050159
Author(s):  
Yi Gong ◽  
Yanbing Han ◽  
Fang Zhang ◽  
Mingyue Zhai ◽  
Xing Chen ◽  
...  

In this work, carbon nanodots (CNDs) were synthesized from extract of mango leaves. Sphere nanodots were formed rapidly by one-step microwave heating. The photoluminescence (PL) of the CNDs was found greatly dependent on the reaction temperature. The emission peak position of the CNDs changed from 550[Formula: see text]nm to 430[Formula: see text]nm when the heating temperature increased from 120[Formula: see text]C to 150[Formula: see text]C. Particularly, the CNDs synthesized at 130[Formula: see text]C showed multi-band emission at 411[Formula: see text]nm, 480[Formula: see text]nm and 530[Formula: see text]nm, providing emitting color from blue to yellow. Moreover, the free chlorophyll molecules in the solution added red fluorescence at 670[Formula: see text]nm, and the integrated emitting color of the CNDs solution was close to white. Coated on a commercial 365[Formula: see text]nm light-emitting diode (LED) chip, the CNDs showed greenish white light with CIE coordinates of (0.37, 0.44). This work provided a one-pot, rapid and green method to obtain multi-emissive CNDs toward white LEDs.


2020 ◽  
Vol 5 (6) ◽  
pp. 2070035
Author(s):  
Sadra Sadeghi ◽  
Rustamzhon Melikov ◽  
Deniz Conkar ◽  
Elif Nur Firat‐Karalar ◽  
Sedat Nizamoglu

Sign in / Sign up

Export Citation Format

Share Document