Photoluminescence Imaging and Discrimination of Threading Dislocations in 4H-SiC Epilayers

2013 ◽  
Vol 740-742 ◽  
pp. 653-656 ◽  
Author(s):  
M. Nagano ◽  
I. Kamata ◽  
H. Tsuchida

Photoluminescence images and spectra of threading screw dislocations (TSDs) and threading edge dislocations (TEDs) were obtained and compared with synchrotron X-ray topography images. Discrimination between TSDs and TEDs by analysis of PL spot size in the imaging technique as well as PL spectra of the dislocations in a near infrared region is demonstrated. We also have succeeded in cross-sectional PL imaging of threading dislocations in a thick epilayer.

LWT ◽  
2021 ◽  
Vol 143 ◽  
pp. 111092
Author(s):  
Jose Marcelino S. Netto ◽  
Fernanda A. Honorato ◽  
Patrícia M. Azoubel ◽  
Louise E. Kurozawa ◽  
Douglas F. Barbin

2013 ◽  
Vol 740-742 ◽  
pp. 15-18 ◽  
Author(s):  
Yuji Yamamoto ◽  
S. Harada ◽  
Kazuaki Seki ◽  
Atsushi Horio ◽  
Takato Mitsuhashi ◽  
...  

We investigated the dislocation behaviors during the solution growth on Si-face and C-face off-axis 4H-SiC seed crystals by using synchrotron X-ray topography. On Si-face, almost all threading screw dislocations (TSDs) and threading edge dislocations (TEDs) are converted into Frank-type defects and basal plane dislocations (BPDs), respectively. On the other hand, on C-face, TSDs were hardly converted. Some of TEDs were converted to BPDs and BPD-TED reconversion was often occurred. Therefore, to reduce density of threading dislocations in the grown crystal, it is better to use Si-face off-axis seed crystal.


2014 ◽  
Vol 778-780 ◽  
pp. 313-318 ◽  
Author(s):  
Masahiro Nagano ◽  
Isaho Kamata ◽  
Hidekazu Tsuchida

This paper demonstrates high-resolution photoluminescence (PL) imaging and discrimination of threading dislocations in 4H-SiC epilayers. Threading screw dislocations (TSDs) and TEDs are distinguished by differences in PL spot size and spectrum. We found that TEDs are further discriminated into six types according to their Burgers vector directions by the appearance of PL imaging. Cross-sectional PL imaging reveals inclination angles of threading dislocations across a thick epilayer.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
N. D. C. Santana ◽  
A. López ◽  
L. P. Sosman ◽  
S. S. Pedro

AbstractThis study reports the synthesis and photoluminescence spectroscopic studies of Cr3+-doped Mg2SnO4–SnO2 ceramics. The crystal structure was analyzed by X-ray powder diffraction, and photoluminescence was investigated at room temperature. The diffractogram confirmed the presence of Mg2SnO4 and SnO2 phases. Photoluminescence spectroscopy identified broad and intense emission bands assigned to the Cr3+ cation occupation in octahedral Mg2SnO4 sites and an orange band assigned to SnO2 emission. All spectra were analyzed and interpreted according to crystal field theory and Tanabe–Sugano theory for the d3 electronic configuration. The broad and intense emission band covering the visible/near-infrared region suggests that this system may be a promising material for use as an active medium in a broadband light source at room temperature.


2018 ◽  
Vol 16 (36) ◽  
pp. 39-46
Author(s):  
Kadhim A. Aadim

In this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.


2006 ◽  
Vol 955 ◽  
Author(s):  
Yi Chen ◽  
Hui Chen ◽  
Ning Zhang ◽  
Michael Dudley ◽  
Ronghui Ma

ABSTRACTInteraction between basal plane dislocations and single or well-spaced threading dislocations is discussed based on synchrotron white beam X-ray topographic studies carried out on physical vapor transport grown hexagonal silicon carbide single crystals. The basal plane dislocations are able to cut through single or well-spaced threading edge dislocations even if the formation of kinks/jogs is energetically unfavorable while threading screw dislocations were mostly observed to act as effective pinning points. However, basal plane dislocations can sometimes cut through a threading screw dislocation, forming a superjog and which subsequently migrates on the prismatic plane via a cross-slip process. Threading edge dislocation walls act as obstacles for the glide of basal plane dislocations and the mechanism by which this occurs is discussed. The character of low angle grain boundaries and their dislocation content are discussed.


2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...


2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


Sign in / Sign up

Export Citation Format

Share Document