Application of High Speed Machining Technology in Modern Die Manufacture

2014 ◽  
Vol 800-801 ◽  
pp. 139-143 ◽  
Author(s):  
Qiu Yue Cui ◽  
Xue Ren Dong ◽  
Yu Zhen Ma ◽  
Tong Hui Liu

With the continuous progress and development of die industry, the traditional die processing has been unable to meet the current needs of society in the quality and quantity of production. Therefore, die manufacturing industry has improved its processing technology, and then high speed machining technology for dies emerges as the times require. The paper summarizes the elaborations of the characteristics of modern die manufacturing and the advantages of high speed cutting die, and the key technologies of high speed machining technology in die manufacturing are also introduced. Thus the paper illustrates that high speed machining technology is an important development direction of the current die processing.

2014 ◽  
Vol 590 ◽  
pp. 418-421
Author(s):  
Yan Zhang ◽  
Xiao Jun Guo

The establishment of high-speed cutting database provides reasonable, optimized high-speed cutting data for mechanical manufacturing industry. It also has important significance for promoting the application and development of high-speed machining technology and improving cutting efficiency and economic benefit. Through combining high-speed cutting database researches. This article focused on analyzing data sources, data mining technology about high-speed cutting database.


2011 ◽  
Vol 305 ◽  
pp. 25-30 ◽  
Author(s):  
Xiao Jun Wang ◽  
Wen Hui Yue ◽  
Zi Qiang Han

As a sustainable model of modern manufacturing industry, green manufacturing is one of the essential solutions of the manufacturing environment pollution problems. Green cutting technology is the base and key of green manufacturing and will be the inevitable trend of cutting technology. High speed machining technology is a kind of the advanced manufacturing technologies which have superiorities as low cost, high efficiency, good processing quality and are suitable for machining thin walled workpieces and difficult-to-cut materials, and the relative problem has attracted scholars' attention from all over the world. From the perspective of green manufacturing, research results of high speed machining hardened steels are reviewed, including cutting force, cutting temperature, selection and optimization of processing parameters and machining quality, and conclude that high speed cutting is one of the key technologies in implementing green manufacturing and cleaner production. Finally, its future works of the research are discussed.


2014 ◽  
Vol 1061-1062 ◽  
pp. 427-430
Author(s):  
Zi Qin Ma ◽  
Yan An Chen ◽  
Peng Fei Zhao ◽  
Tong Wang ◽  
Chen Peng ◽  
...  

High-speed cutting technology has become an important development direction of modern NC machining technology, but the existing equipments are often not suitable for high speed machining. An effective method is proposed in view of the cutting heat in cutting process, by introducing chiller to the existing cooling system, the coolant temperature decrease, tool and workpiece temperature can also reduce, so general machining center can achieve cutting speed as quickly as possible.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2019 ◽  
Vol 814 ◽  
pp. 217-223
Author(s):  
Gui Cheng Wang ◽  
Tao Pang ◽  
Guo Yong Xu ◽  
Ding Jiang

With the development of high-speed machining technology, new technical requirements have been put forward for the clamping of high-speed cutting tools. The traditional clamping methods can not meet the needs of high-speed machining. In this paper, the comprehensive performance of high-speed chucks is systematically compared and analyzed, and the characteristics and main application areas of various high-speed chucks are sorted out, which provides a theoretical basis for scientific and rational selection of chucks.


2006 ◽  
Vol 326-328 ◽  
pp. 1599-1602
Author(s):  
Bo Sung Shin

High-speed machining (HSM) is very useful method as one of the most effective manufacturing processes because it has excellent quality and dimensional accuracy for precision machining. Recently micromachining technologies of various functional materials with very thin walls are needed in the field of electronics, mobile telecommunication and semiconductors. However, HSM is not suitable for microscale thin-walled structures because of the lack of their structure stiffness to resist high-speed cutting force. A microscale thin wall machined by HSM shows the characteristics of the impact behavior because the high-speed cutting force works very shortly on the machined surface. We propose impact analysis model in order to predict the limit thickness of a very thin-wall and investigate its limit thickness of thin-wall manufactured by HSM using finite element method. Also, in order to verify the usefulness of this method, we will compare finite element analyses with experimental results and demonstrate some applications.


2010 ◽  
Vol 29-32 ◽  
pp. 1838-1843 ◽  
Author(s):  
Chun Zheng Duan ◽  
Hai Yang Yu ◽  
Yu Jun Cai ◽  
Yuan Yuan Li

As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on the software ABAOUS which involves Johnson-Cook material model and fracture criterion was used to simulate the serrated chip morphology and cutting force during high speed cutting of AISI 1045 hardened steel. The serrated chip morphology and cutting force were observed and measured by high speed cutting experiment of AISI 1045 hardened steel. The effects of rake angle on cutting force, sawtooth degree and space between sawteeth were discussed. The investigation indicates that the simulation results are consistent with the experiments and this finite element simulation method presented can be used to predict the chip morphology and cutting force accurately during high speed cutting of hardened steel.


2004 ◽  
Vol 471-472 ◽  
pp. 162-166 ◽  
Author(s):  
Yi Wan ◽  
Zhi Tao Tang ◽  
Zhan Qiang Liu ◽  
Xing Ai

High-speed machining has received important interest because it leads to an increase of productivity and a better workpiece surface quality. However, the tool wear increases dramatically in high-speed machining (HSM) operations due to the high cutting temperature at the tool-workpiece interface and chip-tool interface. Cutting temperature and its gradient play an important role in tool life and machined part accuracy. This paper reviews different methods of the measurements of cutting temperature, which include: (1) thermocouples---tool-work thermocouple, embedded thermocouple, combination thermocouple and compensation thermocouple (2) optical infrared pyrometer, (3) infra-red photography, (4) thermal paints, (5) microstructure or microhardness observation. Each method has its advantages and limitations. The fundamental principles and application fields of each measurement method are presented, which is useful for the selection of the measurement methods for high-speed cutting temperature.


2014 ◽  
Vol 644-650 ◽  
pp. 4792-4794 ◽  
Author(s):  
Guo Ru Xie ◽  
Wei An Xie

The high-speed cutting is an advanced manufacturing technology with efficient, high quality and low consume, it is also the development direction of cutting. The concept and characteristic of high-speed cutting is discussed. The performance and application of the major tool materials (such as ceramic cutting tools, diamond tools, CBN tools, coated tools) for high-speed cutting is described. At last, the paper discusses the developing prospect and research direction for high-speed cutting tool materials.


Sign in / Sign up

Export Citation Format

Share Document