Simulation Studies of the Cutting Process on SiCp/Al Composites with Different Volume Fraction of Reinforced SiC Particles

2014 ◽  
Vol 800-801 ◽  
pp. 321-326 ◽  
Author(s):  
Bei Bei Wang ◽  
Li Jing Xie ◽  
Xi Bin Wang ◽  
Xiao Lei Chen

SiCp/Al composites (aluminum alloys reinforced with SiC particles) are classified as the typical difficult-to-machine materials by serious tool wear, premature tool failure, surface defects, etc. In order to understand the formation mechanism of chip and machined surface, the two-dimensional finite element modeling technology of the cutting process for SiCp/Al composites are investigated by using ABAQUS explicit. The actual microstructure is modeled by a multi-phase modeling approach with a circular SiC reinforcement phase randomly distributed in a 6061aluminum alloy matrix phase. The effect of volume fraction of SiC particles is studied by simulating the orthogonal cutting process of aluminum alloy and three SiCp/Al composites with multiplied increasing volume fraction of SiC reinforcement particles. The cutting forces vs. time due to the interaction between cutting tools and SiC particles in the cutting process and the stress distribution in three deformation zones are analyzed. Finally, surface defects including particles debonding, small pits, raised particles and traces of ploughing are predicted and verified by the experimental surface topography.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987806 ◽  
Author(s):  
Yanchun Ding ◽  
Guangfeng Shi ◽  
Hua Zhang ◽  
Guoquan Shi ◽  
Dongdong Han

The stagnant region often appears in front of the tool cutting edge, which is caused by mechanical inlay and excessive pressing in plastic metal cutting with large negative rake angle tools at a low speed. It results in the change of the effective negative rake angle which can affect the flow characteristics of material, the quality of machined surface and the abrasion loss of cutting tools. However, the critical negative rake angle model based on the existence of the stagnant region has not been reported yet. Therefore, in order to investigate the critical negative rake angle value considering the stagnant region, a critical negative rake angle model based on the principle of minimum required energy is established, and the correctness of the theoretical model is verified by orthogonal cutting experiments. At the same time, the influence of the critical value of the large negative rake angle tool on the machined surface quality is studied through different cutting experiments. These experimental results show that the deviations of both experimental and theoretical critical negative rake angle are less than 5% during the orthogonally cutting of the aluminium (AL1060) and copper (T2) materials by the negative rake angle tool. Meanwhile, the critical negative rake angle is related to the adhesive friction coefficient of tool–workpiece contact surface. The analysis of friction characteristics shows that the deviation values of both theoretical and experimental critical negative rake angle are proportional to the coefficient of adhesive friction and the thickness of the stagnant region. Critical negative rake angle has a significant effect on roughness and residual stress of the machined surface.


Author(s):  
Qinglong An ◽  
Jiaqiang Dang ◽  
Weiwei Ming ◽  
Kunxian Qiu ◽  
Ming Chen

The honeycomb sandwich structure has been widely used in the aerospace industry due to its high specific strength and stiffness. However, the machining defects of the aluminum honeycomb core (AHC) have become the key factor that restricts its application. In this paper, the defects' characteristics including the formation mechanism, distribution characteristic, and cutting process of honeycomb cell walls during AHC milling process were experimentally investigated. Furthermore, using normalized Cockcroft and Latham ductile fracture criterion and Johnson–Cook (JC) constitutive model, the numerical simulation of the AHC machining process was conducted concerning the entrance angle. It is indicated that six categories of milling defects are obtained and the quantity as well as distribution regularity of AHC milling defects are determined by the double effects of both the entrance angle and cutting force. Most of the surface defects of honeycomb materials were found concentrated in three regions, named by zones I–III, in which extruding, shear, and tensile deformation was mainly generated, respectively. Besides, the finite element simulation results also agree well with the experimental findings. Finally, a novel optimization method to avoid defects in the aforementioned regions by controlling the entrance angle of all the honeycomb walls during the cutting process was proposed in this paper. Meanwhile, the optimal control equations of the entrance angle for all cell walls were derived. This method was verified by milling experiments at last and the results showed that the optimization effect was obvious since the quality of the machined surface was greatly improved.


2010 ◽  
Vol 37-38 ◽  
pp. 550-553
Author(s):  
Xin Li Tian ◽  
Zhao Li ◽  
Xiu Jian Tang ◽  
Fang Guo ◽  
Ai Bing Yu

Tool edge radius has obvious influences on micro-cutting process. It considers the ratio of the cutting edge radius and the uncut chip thickness as the relative tool sharpness (RST). FEM simulations of orthogonal cutting processes were studied with dynamics explicit ALE method. AISI 1045 steel was chosen for workpiece, and cemented carbide was chosen for cutting tool. Sixteen cutting edges with different RTS values were chosen for analysis. Cutting forces and temperature distributions were calculated for carbide cutting tools with these RTS values. Cutting edge with a small RTS obtains large cutting forces. Ploughing force tend to sharply increase when the RTS of the cutting edge is small. Cutting edge with a reasonable RTS reduces the heat generation and presents reasonable temperature distributions, which is beneficial to cutting life. The force and temperature distributions demonstrate that there is a reasonable RTS range for the cutting edge.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540002 ◽  
Author(s):  
Dongfeng Cheng ◽  
Jitai Niu ◽  
Zeng Gao ◽  
Peng Wang

This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al – Si – Cu – Zn – Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.


2014 ◽  
Vol 1027 ◽  
pp. 107-110
Author(s):  
Jia Liang Guan ◽  
Lei Zhu ◽  
Ling Chen ◽  
Xin Qiang Ma ◽  
Xiao Hui Zhang

The electrolytic in-process dressing (ELID) grinding technology was adopted for precision grinding experiments of volume fraction of 40% of SiCp/Al composites, obtaining the machined surface roughness of Ra0.030μm. Studying the forming mechanism of processed surface, analyzing several typical grinding surface defects, summarizing the grinding characteristics and removal mechanism of SiCp/Al composites.


2012 ◽  
Vol 197 ◽  
pp. 428-432 ◽  
Author(s):  
Uday Dabade ◽  
Suhas Joshi

The utilization of Al/SiCp metal matrix composites in different engineering fields has undergone a tremendous increase due to its tailor-made properties that can be achieved by varying the size and volume fraction of reinforcement. However, the difficulty in machining of metal matrix composites (MMCs) arises not only from the excessive wear of the cutting tools but also from fracturing of the reinforcement particles on machined surfaces that leaves behind adhered particle fragments, pits and cavities. These characteristics in machining of MMCs tend to adversely affect the machined surface quality/integrity. Hence, some attempts are made to improve the machinability of MMCs and surface quality by hot machining using wiper inserts. Experimental results indicate that the moderate heating of Al/SiCp composite material prior to machining (60-90°C) reduces the machining forces and improves the surface quality by minimizing, debonding, fracture and pull-out of reinforcement particles from the matrix material.


2014 ◽  
Vol 800-801 ◽  
pp. 3-8
Author(s):  
Yang Bai ◽  
Pei Quan Guo ◽  
Ning Fan

Summarized the research and development of high speed machining of SiCp/Al composites. Emphasized the research status of high speed cutting of SiCp/Al composite materials, including machined surface quality and tool wear condition. Machined surface quality contains surface roughness and surface defects. The tool wear conditions are different because of different types of cutting tools, but the wear of the rake face, the rear face and the cutting edge are all involved.


2011 ◽  
Vol 314-316 ◽  
pp. 1065-1068
Author(s):  
Shu Jun Li ◽  
Xiao Hang Wan ◽  
Zhao Wei Dong ◽  
Yuan Yuan

Adopted the Lagrange quality point coordinate system description method used the FEM analysis software, the reasonable two-dimension heat-mechanic coupling orthogonal cutting model is established in this paper, which uses the ameliorated Coulomb friction theory to simulate the friction status between the chips and tools. This paper simulates the cutting process with different friction coefficient. It can draw conclusions that the cutting forces and the residual stresses of machined surface are increasing with the raising of touching length of rake face and chip, the raising of cutting temperature. The friction coefficient has the important effect on the machining quality.


Sign in / Sign up

Export Citation Format

Share Document