Investigations on the Machinability of Titanium Alloy TC25

2014 ◽  
Vol 800-801 ◽  
pp. 92-96
Author(s):  
Hong Shan Zhang ◽  
Xing Ai ◽  
Zhan Qiang Liu ◽  
Ji Gang Liu ◽  
Zhao Lin Zhong

Titanium alloy TC25 has been widely used in aircraft industry due to its excellent thermal stability, heat resistance and longer service life. In this paper, cemented carbide tools were applied to carry out orthogonal milling experiments for both titanium alloy TC25 and TC4 with identical cutting conditions. Cutting forces, cutting temperatures and surface roughness were measured to assess the machinability for TC25 and TC4. From the experimental results, the cutting parameters can be optimized to guide efficient machining processing of TC25.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 850 ◽  
Author(s):  
Zhaojun Ren ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Xiaoqiang Li ◽  
Chao Yang

In this paper, TiAlN-coated cemented carbide tools with chip groove were used to machine titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B under dry conditions in order to investigate the machining performance of this cutting tool. Wear mechanisms of TiAlN-coated cemented carbide tools with chip groove were studied and compared to the uncoated cemented carbide tools (K20) with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The effects of the cutting parameters (cutting speed, feed rate and depth of cut) on tool life and workpiece surface roughness of TiAlN-coated cemented carbide tools with chip groove were studied with a 3D super-depth-of-field instrument and a surface profile instrument, respectively. The results showed that the TiAlN-coated cemented carbide tools with chip groove were more suitable for machining TC7. The adhesive wear, diffusion wear, crater wear, and stripping occurred during machining, and the large built-up edge formed on the rake face. The optimal cutting parameters of TiAlN-coated cemented carbide tools were acquired. The surface roughness Ra decreased with the increase of the cutting speed, while it increased with the increase of the feed rate.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Kairui Zheng ◽  
Fazhan Yang ◽  
Na Zhang ◽  
Qingyu Liu ◽  
Fulin Jiang

Titanium alloys are widely used in various fields, but their machinability is poor because the chip would easily adhere to the tool surface during cutting, causing poor surface quality and tool wear. To improve the cutting performance of titanium alloy Ti-6Al-4V, experiments were conducted to investigate the effect of micro textured tool on the cutting performances. The cemented carbide tools whose rake faces were machined with line, rhombic, and sinusoidal groove textures with 10% area occupancy rates were adopted as the cutting tools. The effects of cutting depth and cutting speed on feed force and main cutting force were discussed based on experimental results. The results show that the cutting force produced by textured tools is less than that produced by non-textured tools. Under different cutting parameters, the best cutting performance can be obtained by using sinusoidal textured tools among the four types of tools. The wear of micro textured tools is significantly lower than that of non-textured tools, due to a continuous lubrication film between the chip and the rake face of the tool that can be produced because the micro texture can store and replenish lubricant. The surface roughness obtained using the textured tool is better than that using the non-textured tool. The surface roughness Ra can be reduced by 35.89% when using sinusoidal textured tools. This study is helpful for further improving the cutting performance of cemented carbide tools on titanium alloy and prolonging tool life.


2020 ◽  
Vol 111 (9-10) ◽  
pp. 2419-2439
Author(s):  
Tamal Ghosh ◽  
Yi Wang ◽  
Kristian Martinsen ◽  
Kesheng Wang

Abstract Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful, which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter, spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network (surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally, the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show that more optimal surface quality and material removal can be achieved with the optimal set of parameters.


2018 ◽  
Vol 5 ◽  
pp. 12
Author(s):  
Yanfeng Gao ◽  
Yongbo Wu ◽  
Jianhua Xiao ◽  
Dong Lu

Titanium alloys are extensively applied in the aircraft manufacturing due to their excellent mechanical and physical properties. At present, the α + β alloy Ti6Al4V is the most commonly used titanium alloy in the industry. However, the highest temperature that it can be used only up to 300 °C. BTi-6431S is one of the latest developed high temperature titanium alloys, which belongs to the near-α alloy group and has considerably high tensile strength at 650 °C. This paper investigates the machinability of BTi-6431S in the terms of cutting forces, chip formation and tool wear. The experiments are carried out in a range of cutting parameters and the results had been investigated and analyzed. The investigation shows that: (1) the specific cutting forces in the machining of BTi-6431S alloy are higher than in the machining of Ti6Al4V alloy; (2) the regular saw-tooth chips more easily formed and the shear bands are narrower in the machining of BTi-6431S; (3) SEM and EDS observations of the worn tools indicate that more cobalt elements diffuse into the workpiece from tool inserts during machining of BTi-6431S alloy, which significantly aggravates tool wear rate. The experimental results indicate that the machinability of BTi-6431S near alpha titanium alloy is significantly lower than Ti-6Al-4V alloy.


Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta

Abstract Tungsten heavy alloys (WHAs) are ideally suited to a wide range of density applications such as counterweights, inertial masses, radiation shielding, sporting goods and ordnance products. Manufacturing of these components essentially require machining to achieve desired finish, dimensions and tolerances However, machining of WHAs are extremely challenging because of higher values of elastic stiffness and hardness. Hence, there is a need to find the right combination of cutting parameters to carry out the machining operations efficiently. In the present work, turning tests are conducted on three different grades of WHAs, namely, 90WHA, 95WHA and 97WHA. Taguchi analysis is carried out to find out the most contributing factor as well as optimum cutting parameters that can give higher metal removal rate (MRR), lower surface roughness and lower cutting forces. It is observed that feed rate is the most prominent factor with percentage contribution varying in the range of 46–61%; whereas cutting speed has least effect on cutting forces, especially for 95WHA and 97WHA. Optimum values of forces, surface roughness and MRR and the corresponding machining parameters to be taken are presented. It is observed that 95W WHA has slightly better machinability as compared to other two grades since it gives highest MRR with lowest cutting forces and surface roughness values. The optimum machining parameter settings, so predicted, can be utilized to machine WHAs efficiently for manufacture of counter weights and inertial masses used in aerospace applications.


2012 ◽  
Vol 472-475 ◽  
pp. 1087-1090
Author(s):  
Fa Zhan Yang ◽  
Xin Zhuang ◽  
Wan Hua Zhao ◽  
Yong Yang

The purpose of this investigation is to examine the machining behavior of cemented carbide tools in dry hard milling of cellular aluminium alloy (6N01) by experiments and finite-element analysis. From the machining point of view, Cellular aluminium alloy are often considered as poor machinability materials. Milling tests were carried out by using a three-head milling machine and a milling force measuring device. For this purpose, both microscopic and microstructural aspects of the tools were taken into consideration. Meanwhile, the cutting forces and the noise intensity are also considered in the experiment. Results show that cutting forces vary greatly with the experimental cutting parameters. Additionally, the noise field intensity increased greatly as the feed rate increased. Analysis indicated that the major tool wear mechanisms observed in the machining tests involve adhesive wear and abrasion wear.


Sign in / Sign up

Export Citation Format

Share Document