Simulation of Container Design for Powder Metallurgy Titanium Components through Hot-Isostatic-Pressing

2015 ◽  
Vol 817 ◽  
pp. 610-614 ◽  
Author(s):  
Rui Peng Guo ◽  
Lei Xu ◽  
Jie Wu ◽  
Zheng Guan Lu ◽  
Rui Yang

Shima model and two different kinds of container designs were described. The final geometries of powder metallurgy (PM) preforms were predicted by using finite element method. Several PM Ti-6Al-4V parts were fabricated through a hot isostatic pressing route for comparison with the prediction from the modelling. FEM simulation can be used for shrinkage prediction of powder during HIPing process. The finite element calculations agreed well with the experimental data for shrinkage of the titanium alloy powder under HIPing. The simulation results is helpful to fabricate near-net-shape PM titanium parts.

2011 ◽  
Vol 43 (3) ◽  
pp. 247-260 ◽  
Author(s):  
Y. Xue ◽  
L.H. Lang ◽  
G.L. Bu ◽  
L. Li

Densification model of titanium alloy (Ti-6Al-4V) are investigated during hot isostatic pressing (Hip). Experimental data was obtained at various pressures and temperatures during hot isostatic pressing (Hip). Experimental data are compared with the finite element calculations by using the hybrid model and Abouaf model, respectively. The results show that the finite element calculation results by the hybrid model are in agreement with the experimental data for densification behaviour of the titanium alloy powder under Hip; however, the finite element calculation results by using the Abouaf model are over the experimental data. In addition, in order to obtaining relative density distributions of porous body, the statistical relationships during Poisson?s ratio, Rockwell hardness and the relative density of porous body were formulated, the results show that the statistical relationship between Poisson?s ratio and the relative density of porous body is essential to construct such a constitutive model; the statistical relationship between Rockwell hardness and the relative density of porous body is essential to obtain relative density distributions of porous body.


2001 ◽  
Vol 123 (2) ◽  
pp. 221-228 ◽  
Author(s):  
H. G. Kim ◽  
H. M. Lee ◽  
K. T. Kim

Near-net-shape forming of zirconia powder was investigated under the combination of cold die and isostatic pressing and pressureless sintering. A combination pressing technique, i.e., die compaction under cold isostatic pressing, allowed the forming of a complex shaped ceramic powder body with better dimensional control than that achieved by cold isostatic pressing and more uniform density distribution than that by die pressing. The constitutive models proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to simulate densification of ceramic powder under cold compaction and pressureless sintering. Finite element calculations were compared with experimental data for density distribution and deformation of zirconia powder compacts under cold combination pressing and pressureless sintering. Finite element results agreed well with experimental data.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1027
Author(s):  
Joan Lario ◽  
Ángel Vicente ◽  
Vicente Amigó

The HIP post-processing step is required for developing next generation of advanced powder metallurgy titanium alloys for orthopedic and dental applications. The influence of the hot isostatic pressing (HIP) post-processing step on structural and phase changes, porosity healing, and mechanical strength in a powder metallurgy Ti35Nb2Sn alloy was studied. Powders were pressed at room temperature at 750 MPa, and then sintered at 1350 °C in a vacuum for 3 h. The standard HIP process at 1200 °C and 150 MPa for 3 h was performed to study its effect on a Ti35Nb2Sn powder metallurgy alloy. The influence of the HIP process and cold rate on the density, microstructure, quantity of interstitial elements, mechanical strength, and Young’s modulus was investigated. HIP post-processing for 2 h at 1200 °C and 150 MPa led to greater porosity reduction and a marked retention of the β phase at room temperature. The slow cooling rate during the HIP process affected phase stability, with a large amount of α”-phase precipitate, which decreased the titanium alloy’s yield strength.


Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


2022 ◽  
pp. 103411
Author(s):  
Alessandro Sergi ◽  
Raja H.U. Khan ◽  
Sandeep Irukuvarghula ◽  
Martina Meisnar ◽  
Advenit Makaya ◽  
...  

Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


2014 ◽  
Vol 496-500 ◽  
pp. 279-283 ◽  
Author(s):  
Peng Ju Xue ◽  
Yan Wu ◽  
Qing Song Wei ◽  
Yu Sheng Shi

Near-net-shaping hot isostatic pressing (NNS-HIP) method was used for once-forming complex monolithic Ti6Al4V alloy bladed disks manufacturing. The complex monolithic bladed disks were formed successfully in a near-net-shape manner using the proposed HIP mold scheme in this study. The results showed that there were fine and homogeneous strip α+β phases and no obvious pores or cracks were detected. A "layered" phenomenon was observed in as-built part microstructure. The tensile strength value of specimens from the NNS-HIP bladed disks in the same furnace reached 900MPa, which was higher than the values of parts manufactured using casting and forging processes. The fracture morphology analysis showed that the sample had a ductile fracture. This study provides a reference to the NNS-HIP for the bladed disk parts manufacturing.


1983 ◽  
Vol 50 (4a) ◽  
pp. 896-897 ◽  
Author(s):  
G. H. Kaufmann ◽  
A. M. Lopergolo ◽  
S. Idelsohn

The usefulness of using the speckle photography technique in fracture mechanics to check numerical calculations is demonstrated for an internally pressurized cylinder with a surface flaw. A pointwise technique was utilized to measure the opening displacements along the crack line and the Mode I stress-intensity factor was determined by extrapolating these results to the crack tip. Finite element calculations were performed to be compared with experimental data and good agreement was obtained.


Sign in / Sign up

Export Citation Format

Share Document