Effect of Si3N4 Addition on the Properties of Sn-1.0Ag-0.7Cu Solder Alloy

2015 ◽  
Vol 819 ◽  
pp. 167-172 ◽  
Author(s):  
Norhayanti Mohd Nasir ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Izrul Izwan Ramli ◽  
...  

This research has investigated the properties of low-silver Sn-1.0Ag-0.7Cu (SAC107) alloy. Different weight percentages (0, 0.25, 0.5, 0.75 and 1 wt. %) of silicon nitride (Si3N4) were used as reinforcement particles. The SAC107 - Si3N4 composite solder was fabricated via powder metallurgy (PM) technique. The results showed that homogeneous distribution of Si3N4 particles along the grain boundaries has increased the hardness of the SAC107 - Si3N4 composite solders compared to monolithic SAC107 solder alloy. The melting temperature is maintained at the SAC107 level, indicating that the novel composite solder is suitable for existing soldering process.

2014 ◽  
Vol 803 ◽  
pp. 228-232 ◽  
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Rita Mohd Said ◽  
...  

The effect of Si3N4particulate addition on the commercial SN100C solder alloy has been investigated. The SN100C/Si3N4composite solder was fabricated via powder metallurgy (PM) technique. In this study five different Si3N4composition which have been chosen were (0 wt. %, 0.25 wt. %, 0.5 wt. %, 0.75 wt. %, and 1.0 wt. %).The results showed that Si3N4particulate has remain as foreign particles and precipitate at the grain boundaries thus improved the physical properties of the composite solder compared to monolithic solder alloy. The addition of 1.0 wt. % Si3N4give highest hardness value to the composite solder.


2015 ◽  
Vol 754-755 ◽  
pp. 518-523 ◽  
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Rita Mohd Said ◽  
...  

The effect of micron-size silicon nitride (Si3N4) particles additions, up to 1.0 wt. % on Sn-Cu-Ni (SN100C) solder alloy was investigated. Sn-Cu-Ni composite solder were prepared via powder metallurgy (PM) technique. Different percentages of Si3N4(0, 0.25, 0.5, 0.75 and 1.0 wt. %) were added into the alloy. Result revealed that reinforcement was well distributed between the grain boundaries which could positively affect the properties of the composite solder.


Author(s):  
Nan Jiang ◽  
Liang Zhang ◽  
Kai-Kai Xu ◽  
Mu-Lan Li ◽  
Feng-Jiang Wang

In this work, SiC nanowires (SiC NWs) reinforced SBG (Sn-58Bi-0.05GNSs) composite solder was prepared using powder metallurgy route. The effect of SiC NWs on melting temperature, wetting behavior, shear properties, microstructure of the prepared solder joints and interfacial reaction were studied in detail. Results reveal that incorporating SiC NWs can develop the wetting behavior and shear properties of solder joint but has a little effect on melting temperature. The microstructure of solder is refined markedly with the addition of SiC NWs, which is one of the reasons for the increase in the shear strength of the solder joints. Additionally, the dimension of Cu6Sn5 IMC grains diminishes with the doping of SiC NWs, which resulted in the thinning of Cu6Sn5 IMC layer. Thence, the addition of SiC NWs may be an effective way to improve the reliability of solder joints.


2015 ◽  
Vol 754-755 ◽  
pp. 166-170 ◽  
Author(s):  
Nurul Razliana Abdul Razak ◽  
Nisrin Adli ◽  
Norainiza Saud ◽  
Sayyidah Amnah Musa

The effect of Al particles addition on the microstructure and microhardness of Sn-0.7Cu-xAl lead-free solder was systematically investigated. The Sn-0.7Cu-xAl solder alloy was successfully fabricated via powder metallurgy (PM) method which consists of mixing, compaction and sintering. Results show that the crystallization of Sn occurs in two different modifications; α-Sn and β-Sn, where the formation of β-Sn able to reinforce the solder matrix. The Al particles also distributed homogeneously along the grain boundaries. The microhardness was improved by 19% as the weight percentage of the Al particles increased up to 1.0 wt.%.


2014 ◽  
Vol 803 ◽  
pp. 273-277 ◽  
Author(s):  
Norhayanti Mohd Nasir ◽  
Norainiza Saud ◽  
Mohd Nazree Derman ◽  
Arif Anuar Mohd Salleh ◽  
Mohd Izrul Izwan Ramli ◽  
...  

This research has investigated the physical performances of low-silver Sn-Ag-Cu (SAC) lead-free composite solder reinforced with titanium dioxide (TiO2). The SAC/TiO2 composite solder were fabricated via powder metallurgy (PM) technique. The five different composition chosen were 0, 0.25, 0.5, 0.75, and 1.0. The results showed that distribution of TiO2 along the grain boundaries has increased the hardness of the SAC/TiO2 composite solders compared to monolithic SAC solder alloy.


2015 ◽  
Vol 754-755 ◽  
pp. 513-517
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Rita Mohd Said ◽  
...  

Composite solder has drawn attention improvement in microstructural modification and mechanical properties. This research was done to investigate the influence of activated carbon (AC) particulate on the commercial Sn-Cu-Ni solder system (SN100C) solder alloy. The SN100C+AC composite solder was fabricated via powder metallurgy (PM) technique. In this study, five different AC compositions were chosen; (0, 0.25, 0.5, 0.75 and 1.0 wt. %. This study has shown that composite solder has better properties compared to the monolithic solder alloy. A small amount of AC particulate had improved the physical properties of the composite solder. Microstructural analysis showed that the reinforcement was well distributed along the grain boundaries and no significant influence on the melting point of SN100C. Apart from that, 1.0 wt. % of AC additions results with the highest hardness value compared to the other composition.


Author(s):  
Zheng Liu ◽  
Yang Li ◽  
Yifeng Xiong ◽  
Huiming Gao

Abstract The effect of trace Nb nanoparticles on thermal properties, wettability, microstructure and mechanical properties of Sn-0.7Cu solder alloy was investigated. The results show that the melting temperature of Sn-0.7Cu composite solder alloy is between 229 ? and 231 ?, and the effect of Nb nanoparticles on the melting temperature is not obvious. The wettability of the solder alloy was remarkably improved by adding Nb nanoparticles. The coarse ß-Sn phase and ß-Sn/Cu6Sn5 eutectic in the Sn-0.7Cu composite solder alloys is refined by adding appropriate Nb nanoparticles, and then the ultimate tensile strength (37.3 MPa) and the elongation (2.47 mm) of Sn-0.7Cu alloy are increased to the maximum 45.4 MPa and 4.59 mm of Sn-0.7Cu-0.12Nb alloy. The fracture mechanism of Sn-0.7Cu-xNb composite solder alloys are plastic fracture.


2015 ◽  
Vol 819 ◽  
pp. 161-166 ◽  
Author(s):  
Mohd Izrul Izwan Ramli ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Rita Mohd Said ◽  
...  

The effect of Si particulate addition on the commercial Sn-Cu-Ni solder system (SN100C) solder alloy has been investigated. The SN100C/Si composite solder was fabricated via powder metallurgy (PM) technique. In this study five different Si composition chosen were (0 wt. %, 0.25 wt. %, 0.5 wt. %, 0.75 wt. %, and 1.0 wt. %). The results indicated that adding a small amount of Si particulate can slightly improve the physical properties of the composite solder compared to monolithic solder alloy. Microstructural analysis revealed the reinforcement seen well distributed between the grains boundaries with additions of 1.0 wt. % resulted with highest hardness value.


2015 ◽  
Vol 754-755 ◽  
pp. 530-534
Author(s):  
Norhayanti Mohd Nasir ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
M.N. Derman ◽  
Mohd Izrul Izwan Ramli ◽  
...  

This research has investigated the solder performances of Sn-0.7Cu lead-free solder reinforced with silicon nitride (Si3N4). The Sn-0.7Cu + Si3N4 composite solder were fabricated via powder metallurgy (PM) technique with five different weight percentages (0, 0.25, 0.5, 0.75 and 1.0). Results showed that distribution of Si3N4 along the grain boundaries has increased the hardness of the Sn-0.7Cu + Si3N4 composite solders compared to monolithic Sn-0.7Cu solder alloy. Addition of Si3N4 reinforcement had no significant effect to the melting temperature of the solder. Overall, the entire range of Sn-0.7Cu + Si3N4 composition greatly improves the microhardness of the eutectic solder.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Sign in / Sign up

Export Citation Format

Share Document